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1 Outline of discretizatoin

The outline of finite difference method adapted for this model is as follows.

Space differencing The finite difference form of governing equations of the
model are considered on the Lorenz type staggered grid. The space
differencing is evaluated by the forth order centered scheme for scalar
advection terms and the continuity equation, and the second order cen-
tered scheme for others. The numerical diffusion is introduced to the
equation of motion, turbulent kinetic energy equation, and advection
diffusion equation of dust so that the 2-grid noise associated with cen-
tral finite differencing can be suppressed. The numerical diffusion in
equation of motion is proportional to the squared wind shear and that
in turbulent kinetic energy equation, and advection diffusion equation
of dust is proportional to the third power of Laplace operator.

The vertical integral in calculating COs infrared radiative flux is eval-
uated by the trapezoidal rule.

Time differencing The time integration is performed by the leap-frog scheme
for advection and buoyancy terms and the forward scheme for turbulent
diffusion and forcing terms. The forward scheme is also adapted once
per 20 steps for advection and buoyancy terms to stabilized numerical
solution. The radiative flux associated with dust is given by iteration
method of the matrix equation, where the number of iteration is 4. The
time integration of 1D thermal conduction equation of grand surface is
performed by the Crank-Nicolson scheme.

In the following sections, the subscripts ¢, 7 show horizontal and vertical grid
point, and the superscripts n, N show time step. The number of vertical grid
level is J. The scalar and basic state variables are evaluated on the grid point
and the other variables are evaluated on the half grid point. Az and Az; are
the horizontal and vertical grid intervals, and At is the time interval.
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2 Atmospheric model

2.1 Equation of motion

Before making finite difference equations, equation (1)~(3) show in Part I
are transformed as follows.

ou 0P
T
ov
a - ﬂv )
ow _ 0P
o 0z
where,
P = O — 7,
ou ou op
a = —ua—x—wa—z—fv—l—D( )—a—x,
B v ov
g = —ua——wa—z—l—fu—i—D(v),

z ow ow 0
= —U— — W— — 4+ D d
7 /o ( u@x w@z —I—g@0 + (w)) :

In this formulation, the time dependence of upper and lower boundary con-
ditions are disappeared.

The advection terms D[UVW]ADV are evaluated by the combination scheme
of flux and advection forms. The time integration is performed by the for-
ward scheme for the friction term [D[UVWIVIS]Y, ., [D[UVWINLV]Y,
and combination of the leap-frog and forward scheme for the other terms,
The calculation method of pressure term P are shown in Section 2.3.

~

P...—P.
n+1 _ N i+1,5 %J
Uiply = Yirly +dt { Ax Tl (1)
n+1 _ N n
Vgl T Vil T At (2)
P, —DP.
J+1 2,
witt, = N g 8 (3)
Lity LIt Azjia
2
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At for forward. (4)

n for forward,

N — { n—1 for leap frog, g — { 2At for leap frog,

Qir1; = —(Yirry = ig) + [DUADV],,  + [DUPRSY,,  + [DUCOLLJ,, |
+[DUVIS]Y, ; + [DUNLV]Y, . (5)
= [DVADV];;%J [DVCOLIJ?,, ; + [DVVIS]% i+ [DVNLV]ﬁ%,J(ﬁ)
J
Yy = Y ([DWADV]Y, , + [DWVIS]Y, . + [DWNLV]Y, .
2
§'=0
+BUOY]Y, 1) Az (7)
TL 1 n n n n
T (pOer— Uit L Wikt gt~ Poj-dUist - %U’Z%,j—%) AI/ (pojA2))
_UH_%J (V‘,Oo’v/po)?_,_%d} J (8)
T (poj'f'* Vi1 Wik rd T Poj-1Vik éw?+%7j—é> Ax/ (pojB2))
_UH-%J (V-pov/po) Z‘+%7]‘}/A$a (9)
n 1 n n n
DVVADV”Jr = TAr {(WH%,J'JF%UH%,#% W1l J+2)
™ (pOJHijHw?jH PO Wi ;W m) A9"’/ Poj+12%11)
Wi (V'po'v/po,j)m%} : (10)
n 1 n n n n n n
DUVISz+ J (Az)? {[KHIJ ( Uips; — uz‘+%,j) Ki; ( Uipl; — ui—%,j)}
(Az)? n " n
JrPOjAzj [pOJ%KH%ﬁ% (ui+%vﬂ'+1 B ui+%d>/A2j+%_
'OOJ*IKH =3 (u?—l-%ﬁj N u?-ﬁ-%uj—l)/AZj*%]}’ (11)
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(12)

(13)

o )3
Uit 1y

(14)

P

(15)

1
DVVISZ@ (Az)? {[Kznﬂ,y ( ?+%,j - ”ﬁé,j) K ( zn%,j - vf,%,j)}
(Az)® n n n
g oKy (gun = vibyy)/ A%y
Po,j—ler?,y—g ( Zf-%,j - ”?Jré,j—l)/Azj—%”’
1
DVVVIS"JJr W {[KZL+%J+% (erl,jJr% - ijJr%) K’Lnfgijr (w2j+% - wﬁl’ﬁ%)}
(Az)* n(om n
+m [Po,jJrlKi,jH (wi,j+1 - wi,j)/AZj+1_
P KT ( ZIJ+% - ww—%)/Azj_l]}'
DUNIVE 3, = {] (uhgy = ) = (g — )| + 00 (g
- (u?ﬁ-%,j - U?Jr;,j—l)g} }/ (16.0 - 10° - po;Az;/Ax),
DVNLV;ZW. {_(U?+g’j - ’UinJr%,j)g - (U?+%,j — Uiy 3 ) ] +0.1 ( Virdj+1 —
—(qg;j—vgéJA)ﬂ}/%1ao-uﬁ.pQﬂs%/Am)
n [ n n 3 n n 3
DWNLV{; {_(wz‘+1,j+; - wi,j-&-%) - (wi,j-‘r% - wi—l,j—f—%)
+0.1 (w?z,j++% - ijJr%)g B (w g+ Wi ,J—é)g]}/
(16.0-10% - py ;1021 /Ax),
n g n
BUOY?, s B0y s oy
DUCOLL}, , | AL
DVCOLI,, ; = +ful,, .

n _ n n no__
Uipl i+l = 0.5 (ui+%,j+1 + “i+%,j) v Wiy = 0.5 ( Uil + “ -1 J) ?

n o n k
Vip1 41 =05 (Uz’—&-%,j-i-l + Ui—i—%,j—l) )

—05(2+ LU J)
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wﬁ;ﬂ%::050%+”+1+ugﬁi) ._05( Wiy wl 1),
9 n n

9i7j+% < 02 J+2 + 1697, j+1 + 16923 1 16923 2)

Klosjon = (nw(K+U+y+KﬁJf+Kg+y+Kﬂ),

O0+1 = 0.5(00 11+ Ooj11) . pojr1 = 0.5(po+1 + pojr1) s

n _am awt g .

\V4 n _ Yigr T U vaHE i+3.0+3 'OOJ—* + 1i-1
(V-pov/po)iyr; = + )
2 Ax JARTANS

ut o —ult . n
H‘%»]"‘% 1—%»]4‘% P0,j+1W; 11 — PO ]wz]

(V'pov/po)zj+% - Az - Po +1AZ
J

2.2 Thermodynamics equation

The advection terms [DTADV]?;, [DTADO]}; of equation (5) in Part I are
evaluated by forth order centered scheme. In time integration, the forward
scheme is adapted for the friction terms [DTDIF]};, [DTDIO]Y;, the radiative
heating term @[, ; and the dissipative heating term QJ, ; ;. The calculation
method of radiative heating term is shown in Section 5.

n @07'
ei,jl = 92]?;—’—6#{,1_‘]( radzj+desz])

0,j

+ [DTADV]?; + [DTADO]?; + [DTDIF]Y; + [DTDI0JY } (20)

Ce

ley

3
Qil\;s,i,j = (511'};‘)27 (21)

D“”Wm—_{mﬂm[gﬁmm+a+gmm%w_8ﬂM 5
i pOjAzj[ YRR >+§F92 ii+h) —8F(’z<zvj—é>+24F92<zsj—%>”’

Fex(H— g) = Pyl ( 160H2] 1681+1J 169” 166i1’j) ’
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" n 1 9 9 T .
Fez(i,jJr%) = p07j+%wi,j+% ( 1681 Jj+2 + 691 J+1 + 1601J 166i7j—1) :

DTADOW:_{/JOJA:C@OJ[ 31 o1+ 5 et — 5P 1)+ 37 e 50
1 . 9 9 1o

e - 1Ot + S FOY sy~ SFOF )+ o FO )]} (23)

Fn

w(i+14) = PO

. i | 9 9 1
FOG.(j41) = Poj+1Wijy1 (_1660’j+2 + T6®0,j+1 + T6®0,j — 16@0,j—1> :

n 1 n n n n n n
DTDIF;; = (Az)? |:KZ+ ](92+1] Qi,j) o Ki—é,j(ei — 0 19)}
1 or. . — on. - 07, — 07,
Poji1 Kznj+ M _ Po]-IKZ-"j1<4”1€)2 )
pU]AZ] 2 2 AZ].+% o2 o2 AZ]'*%
(05,41 — O%,) = (00, —O0,-1)
DTDI0}; = —— KT 2L =y 1 K
" po Az, Poj+5 % i+4 Aszr% Poi-3ii-3 AZ];%
(25)
KZ_QJ _05(K271+1]+Kn) Kzn]-‘rl _05(K J+1+KZJ)

2.3 Diagonostic equation of pressure function

The diagnostic equation of nodimensional pressure function is solved by us-
ing the dimension reduction method. Before making the finite difference
equation, equation (9) show in Part I is transformed as follows.

P10 9\, o(1. \ o
ox?  py 9:" 5 ~ Ot \ po po or
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The finite difference form of the pressure equation can be written in matrix
form as follows.

D,P+D.,P=S (26)
where P, D,, D., S are matrixes whose elements are finite difference form
of following terms.

P 0? 10 0 0 (1 Vo) 4 0
—_— —_— — — — . 705
T0x2 py Oz Pa. ) o 0o or "’
(26)can be rewritten by using the eigenvalue matrix A and the eigenvector

matrix V of D,.
VD,H+VAH =S.

where D,V = VA and P =V - H. The final form of matrix equation is as
follows.

(D +A)H=V"'S, (27)

In calculating elements of matrix D, the vertical derivative in

10 0

g(?*zpo aﬂ
are evaluated by the second and forth order centered schemes because the
space differencing in the continuity equation is evaluated by the forth order
centered scheme while that in the pressure gradient term is evaluated by the
second order centered scheme. Therefore D, is represented as a band matrix
whose elements A; ; are given as follows.

1 1 (po,i+2 + Po,it1)
A = — : : ) 28
i PoAz; (24Azi+g 2 (28)
1 1 (po,i+2 + Poit1) 9 (po,i+1 + po,i)
Aiip1 = ’ 7 ’ ’ 9
At Pl z; (24Azi+g 2 + 8Ami+% 2 (29)
1 9 i 4 9 7 i—
A = - (po+1 + p0i) | (Po.i + Po.i-1) (30)
polz; \ 8Azm, 1 2 8Az 1 2
1 1 (po,i—1 + poi—2) 9 (poi+ poi-1)
A = : ’ i 70, 31
+ Pl z; (24Azi_:2% 2 + 8Azi_% 2 (31)
1 1 (po,i—1 + po,i—2)
Aipas = — ’ i-2) ) 32
+2 Pl z; (24Azi_g 2 (32)
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The boundary conditions are 8% = (0 at the lower and upper boundary.

The horizontal differencing is evaluated by using the Fourier expansion.

NX/2-1

H = Z [H]kz7 (33)
NX/2-1

vis = Y [V—ls]kz, (34)
k=1
NX/2-1

(Da+A) = > [Dy+A], (35)

ky=1

H], =D, +A],' [V'S]

ke

2.4 Basic state equations

The basic state pressure (Fp ;) and density (po ;) are calculated by the hydro-
static equation and the equation of state given the basic state temperature
T07j.

J

9
IHPO":IDPQO— E AZ‘, (37)
’ = Rlv;
P() j
= 38
p07j RTO,j ( )

IIy ;, ©y; are calculated by using F j, po ; as follows.

Py i\"
Mo, = ’J> 39
0] <P00 ? ( )
To.;
S} —L 40
0, HO,j ( )
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3 Turbulent parameterization

3.1 Subgrid turbulent mixing parameterization

The space differencing in the turbulent kinetic energy equation (equation (10)
in Part I) is evaluated by the forth order centered scheme for advection terms
and the second order centered scheme for other terms. In time integration,
the forward scheme is adapted for the friction terms. Representations of
[DKADV]}; and [DKDIF]}Y; are same as those of (22) and (24).

et = &N 4 dt {[DKADV]}, + [DKDIFJY, + [DKNLD],

i,J
C. 3
+ [DKBP]}; + [DKSPJ}; — l(sﬁj)g} (41)
DKNLD}, = (Ax)? { NLD,H%,J-(QH,J‘ —erj) — KNLD,ifé,j(gi,j - 5i—1,j)} + oz
n (€Z'+1 B 52) n (62 — 6:}@ '—1>
pO,j-&-%KNLD,i,j-F%ﬁ Bl po»j—%KNLDviaj—%lAz—-lj )
]+§ ]_5
) (M) L), T LE)
NLD,H%,J‘ = MIN [KNLD,maxa 0.01 At j2 ’ )
n (Az)* L£(e)ij + L)
Nepig+y = MIN [KNLD7maxa 0.01—% : 5 ok
L(e)y; = (3 €y T Eim1y — 2655| t |Eim T i — 265 )/2000’
Azx)?
KNipmar = 0-2( At) .
n g gen 1
DKBPZJ = _@KZ’]TZJ {(017]+% + @0,j+%) - (017]—% + ®O7j—%)] 7(43)
u?+l i (O j ’ w?ﬁl - w?jfl ’
DKSP?. = 2K = 2 —2 —*
(2%} bJ Ax + AZj
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—|—*€T-L- ui,j+% B uz,j % + wi+%,j B wz—§,]
3 Az Az
n n 2
u. .. 1 —Uu 1 w. 1 . — W, 1
,J+5 1,J—%5 i+5,] 1—5,]
+ K7 ) 2 4 2 2 44
J Az; Az ] (44)
quJr% =05 <U?+%,j+% + U?7%’j+%) s w?Jr%,j =0.5 (w?+%’j+% + wﬂ%,jf%) .
3.2 Surface flux parameterization
The finite difference form of the surface flux are as follows.
Fui = —poCpilu; 1 |u; 1, (45)
FG,i = POCD,i’Ui,% (Tsfc,i - Tz‘,l)- (46>
where
_ aRiB’i . .
Cps — Cpn <1 1 1+C|RiB,i|1/2> for Rig; <0, (47)
CDn (1+bRiB,¢)2 fOT RlB,i Z 07
The bulk Richardson number is calculated as follows.
z 63 c,i 62
Rip, = < 1(Osre 1) (48)

@0,1712‘,%
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4 Dust transport

In the advection diffusion equation of dust ( equation (20) in Part I), the
advection term [DQADV]?; is evaluated by the forth order centered scheme
and the vertical advection term associated with the gravitational settling
[DQFALL]Y; is evaluated by the first order upstream scheme. In time in-
tegration, the forward scheme is adapted for the friction terms [DQDIF]Q;,
[DQNLD]}; and the gravitational settling term [DQFALL]}Y;. Representation

of [DQADV]%, [DQDIF]}Y; and [DQNLD]}; are same as those of (22), (24)
and (42).

gif" = ¢ + dt {[DQADVI; + [DQDIF]Y, + [DQFALL]Y, + [DQNLDI?; }

(49)
n 1 n n
DQFALL};, = —m {Fsz(i’jJr%) - Fsz(i,j—%)} 5 (50)
4pagrioa Ar Pr
FQf". . = ——=mee ] 42 G i
sz(l,j—%) 18’[7 + Timod Pojj pO,quW
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5 Radiation

The radiative heating rate is calculated from the radiative flux by using the
second order centered scheme.

n —
rad,i,j 'rad JAR,,j + Qrad JNIR,j + Qrad dust,SR,i,j + Q'rad dust, IR z,]7(51)
Q F* net,z,j+2 F*,net,ﬁj—% (52)
rad,x,i,j ;
Cp APOJ
T 1 - _
E, metyij+s = FIRzg—l— FIR,i,j—&-%’ ARy, = PO,jJr% PO,jf%

The radiative flux is evaluated on the half grid point The subscript m shows
grid point in the wave number. In the following sections, the superscript
which shows time step is omitted.

5.1 Radiative transfer of atmospheric CO,

The finite difference form of the infrared radiative flux and the Plank function
are represented as follows.

7 —
FIR,i,j-s—% - Z Avp, {WBVivTS.fc,i,Z;(O’ Zj+%)
m

J Tm(2~+;,2’-/+1)—7( 1y 2 1)
+> 7B,.1 T T A : (53)
j'=1 N Azj
J To(zii1,2003) — T2, 1, 20

1 . m\~j+5°~j'+35 + e +

m J'=j

1.19 x 10*81/31
BV"“T@]' = 61~4387Vi/Ti,j _ 17 <55

Ti; = To;(0i; + ©0y) (56)

where the averaged transmission function, the equivalent width, and the
effective path length are represented as follows.

Spu(z; i+l 2yl 1)

Tn(zj41, 2504 1) = exp(=Wanjjr [Avm), - Win iy = )
j \/1—|—Smu(JJH,ZJ,Jr )/ o,
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Dy
— * JJ
u(z'JJr1,,zj,Jr 1) = 1.67g|P07j+% — PO,j’+%|7 ay, = Osz,
/
-1 : _
I Pogsr - 1679 Py s — Py

P
w241, 2j11) ’

0+ = 0:5(Fo; + Pojia), Py =
=

The finite form of the near infrared radiative flux and the effective path
length are represented as follows.

NIR,Z,]+2 = ZAVW{ Vm ( ]+17ZJ+ >COSC} : (57)

L67g|Pyjs = Po gy
u(zj+%, ZJ+%) - MAX(cos , €)

where € is a small parameter to ensure v = 0 when cos ¢ = 0.

5.2 Radiative transfer of dust

The finite difference form of the solar radiative transfer equation of dust are
represented as follows.

T
FT o FT . A ) Fdlf Vm, 7J+1 - Fdl.ﬁ”m, 1,5— 2
difwmii+s 7 difwmij—1 Tvm.j | Vvm 5
1
Fdlf Vm,t »]‘f‘l + Fdlf:”m 5,J— 2 TV J+1/:U‘0
— Yo 5 —~ V@, Soe itz (58)
F! +F!
! - Ft A difvmij+3 difvm,ij—3
difomig—t — Ldifwmigry TS Tvmd | V20m 2
F ,+ F .
d sVm,, + d swVm, ~ -7 . /:“'
= g IS IR (1, )5, Soe it (B0)
Qe U Sp()qu 7 A
Ay = r AT A% Tvm+s = Z ATy, 5
eff Ps §'=j+1
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(58) and (59)can be represented in matrix form as follows.

Fliy, = AFy;, +BFy, +R, (60)
Filif,um = CFIlif,Vm + DFilif,um + S. (61)
where Fl,,, = (F;iﬁym’i’%, F;Z.fyymﬂg, s F;Z.fyymﬂ.’H%)T and so on. (60) and

(61)are solved by iteration method. The elements of the matrixes in (60) and
(61)are represented as follows.

_%AT’/mvj/ylva k = -]7.] 2 ]‘

Ajk = 1—- %ATVMJJYLVm k = ] - 17] Z 1
0 others
A j=k=0
Bjk - %ATZ’MyjﬁyzyVm k= j?] - 17] 2 1
0 others
O, = AT 4120, K =0,0+1,7 < T =1
gk 0 others
_%ATVm7j+1717Vm k = j7] S J - 1
D = 1- %ATum,jH%,um k=7+1
0 others
R B ASOe—TDm,%/HO J _ 0
i ~ % =y mo
ATI/m,j’y.g,ljme"LSOe U77L7.7+2 j 2 1
g — AT, (- Ws,um)@msoe_T”’”’”%/uo j<J—-1
! 0 j=J

The finite difference form of the solar radiative transfer equation of dust are
represented as follows.

F! 4+ F!

.. |
1 . 1 IR,vm t,j+5 IR, vm i,j—5
.. l —_— F . '_l - ATI/m,j fYLVm
IR,vm,i,j+5 IR,vm,t,j—5 2
I N
IR’Vmﬂ:]J’_% + IR7Vm717.7_% 2 1 ~ % B
- ’}/271/771 2 - ﬂ-( - wl/m) meTi,]( 2)
Fl L +F
Fi . Fl —|—A IR,Vm,l,]+% + IR,l/m,’L,_]fé
IRomig=t = CIRwigt T DT | V2 2
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F! , + F!

IR vm,i,j+% IR vm,i,j—% .
— Mm 9 + 27T(1 - wym>Bl’m,Ti,j( 3)

(62) and (63)can be represented in matrix form as follows.

F}R,Vm = AF}R,ym + B/F%Rﬂjm + R/7 (64)
Fip,, = CFi, +DFi, +5' (65)
where Fl,, = (FITRWWZ,’%,FITR,VW%, ...,FITR’VWLH%)T and so on. (64) and

are solved by iteration method. The elements of the matrixes in (64) and are
represented as follows.

;[0 j=k=1
ik Bjj, others

TrBmeTsfc,i j = 0

277A7—1/m,j(1 — (’D*)BVm,Ti,j j > 1

S, o QWATVm’j(l — J)*)BVm,Tz‘,j j < J — 1
o 0 1 =N

R;
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6 Ground surface

The time integration of 1D thermal conduction equation of grand surface
(equation (55) in Part I is performed by the Crank-Nicolson scheme. The
space differencing is evaluated by the second order centered scheme. The
grand temperature and depth are evaluated on the grid point and the heat
flux is evaluated on the half grid point. The number of vertical grid point is
J' and the suffix of the lowest grid point is j = 1. The 7; ; is assumed to
the surface temperature Tsy.;. The finite difference 1D thermal conduction
equation is represented as follows.

n+1 n n—+1 n-—+1 n-+1 n+1
T‘i,j - T;,j o K T; j—i—_i—l ,I‘z ]+ T;,j—‘r T; ]+ 1
At 4AZ] AZ]+1 + AZJ AZ]' + AZj_l
T;??j‘f‘l B TZL]_+1 _ T;n TT,L] 1 _ (66)
AZjJrl + AZj AZ]' + AZJ,1
or,
rALT]E, m KAt 1 N 1 e kAt T";Srll
Az Az Azij \ Dz Az w Azj Azji1
K,At " T kAL 1 1 /'iA?f [ijrll
= — — — " 4(67
Az] Az 1 Az; (Azj+1 * AZj_l)] A i Azgy )
2 2 2

where k = k,/pycp . This equation can be represented in matrix form as

follows.
A- T =B.-T", (68)
where T = (..., T}, T} 1, T} 5, .-.)" . The elements of A, B are represented
as follows.
kAL 1 1 kAL 1 kAL 1
A;j=4 — = A;j =
H * Az; <A2j+1 - Az 1) T A, Az LT A, Az,
2 2 2
kAL 1 1 kAL 1 kAL 1
B..i—4— — — By = - B.. .= _
7 Az; (AzH% * Azié) it = Az; AzH%’ 5t = F Az Az 1
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Considering the boundary condition of upper and lower boundaries, (68) is

modified as follows.
AT =B.T"+ 8

(69)

Therefore, the grand temperature is given by the solution of the following

matrix equation.

T = A (B-T"+ 8S),

where the elements of A and B are modified as follows.

kAL 1 kAL 1
Aqj=4+ —|=—|.B1=4— — | —
1 + Az (Azs) oH Az (Azz) ’

2

kAt 1 kAL 1
A / /:4 — B / /:4— —
I * AZJ/ (AZJ/;) I AZJ/ (AZJ/;) ’

S is a column vector whose dimension is J’ are represented as follows.

PgCp,gAZ 1

S o ¢[_Fs(1_A)+FIR,net+H]7 j:J/
770, j7J

(70)
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