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DAY 4

1. rotating, stratified fluids: oceans and atmospheres
— vorticity: a vector-tracer in classical homogeneous fluids
geostrophic adjustment, thermal wind

2. wave dynamics: fundamentals, group velocity, energetics, ray
theory

potential vorticity (PV)
- vortex stretching, Prandtl’ s ratio, geography of PV
3. Rossby waves

4. instability => geostrophic turbulence; subtropical gyres:
dynamics, jets and gyres, topography effects

5. Case study of topographic effect on atmospheric circulation:
Greenland and Atlantic storm track.

6. Teaching young undergraduates about the global environment?

7. Seminar: subpolar climate dynamics observed from above and
below: meridional overturning circulations (MOCs) altimetry and
Seagliders



Some ‘buming’ questions for which we thought we
knew the answers:

(i) What drives the global meridional overturning circulation (MOC) of the oceans --
- buoyancy or mechanical mixing induced by winds and tides?

(i) Is high-latitude sinking and the deep, cold branch of the MOC a dominant
member of the meridional heat and fresh-water transport?

(ili) Does the ocean circulation substantially warm western Europe?

More generally, does heat transport by oceanic general circulation affect
atmospheric climate?

(iv) What are the paths of upwelling of deep waters in the global oceanic MOC?
(v) Where are the crucial sites for convection and water-mass transformation ?

(vi) How does wind-driven circulation interact with buoyancy-driven MOC
overturning?

(vi) What is the quantitative rate of water-mass production for the several
components of the North Atlantic DeepWater (for example, Labrador Sea
Water), and how are they altered before being ‘delivered’ to the global MOC?

(vii) How do convection and mixing drive diffusive overturning at many scales,
reaching to the distant circulation.
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Figure 1. Path of the vertical section from the North Atlantic through the Indian and Pacific oceans
and Drake Passage, returning to the Atlantic.

Rezd, | Marine Res 2005
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Oceanic overturning circulations: coexisting with ‘horizontal gyres of wind-

forced circulation




e MOCs have an easier time in the oceans than in the
atmos

a ring of air moved 1000 km north gains westerly velocity

of 100 m sec” There is not enongh energy available to utilize this

mode: the Hadley cell is limited in north-south extent. Forces (eddy

momentum flux from PV stirring) and non-symmetric circulation
are required to support extensive meridional excursion.



Stationary and transient waves or bottom topography
all allow poleward heat flux with small or zero Eulerian
v-velocity, as 1n simple annulus experiment. Note
significance of Rossby radius (NH/f where H =
vertical scale of motion) the scale at which baroclinic

APE ~ KE
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Figure 1. The earth’s radiation balance. The net incoming solar radiation of 342 W m™ is partially reflected by

clouds and the atmosphere or at the surface, but 49% is absorbed by the surface. Some of that heat is returned to

the atmosphere as sensible heating and most as evapotranspiration that is realized as latent heat in precipitation.

The rest is radiated as thermal infrared radiation and most of that is absorbed by the atmosphere and re-emitted

both upwards and downwards, producing a greenhouse effect, as the radiation lost 0 space comes from cloud tops
and parts of the atmosphere much colder than the surface. From Kiehl and Trenberth (1997,

: Absorbed by Surface

consider the differences between tropics and Arctic. .. (a)at 60N latitude
the sunshine incident per unit area is 50% of the full intensity with
the sun overbead; (b) the albedo (whiteness) is greater

source: IPCC-01




Is the ocean MOC important to atmospheric climate?




Global meridional heat transport divides roughly equally into 3 modes:
1. atmosphere (dry static energy) ¢, T + @ (Bryden & Imawak: 2002)
2. ocean (sensible heat)
3. joint atmosphere/ocean mode: water vapor/latent heat transport Lq

The three Wodes of poleward transport are comparable in amplitude, and distinct in
character (sensible heat divergence focused in tropics, latent heat flux divergence focus in the
subtropics) (based on Keith Wellus 1995) climatology, similar to more modern: Trenberth et al. J.Clim 2003)
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very similar numbers from Trenberth & Stepaniak, QJRMS 04




* So, ventilation of the tropics by atmosphere + ocean MOC’s
provides ~ 5 pW (5 x 10'°> W)); distributed over the area of the
Earth between ON and 30N, averages 5 x 101> W/nR? =

39 W m™~, delivering the same amount per m? to the FEarth north
of 30N.

Fully as much heat is carried in the atmosphere by
0.8 Sverdrups (megatonnes sV moisture flux ~ 2 pW as by dry
static energy flux. (using the heat of vaporization, 2.25 M] kg1

(It 1s useful to talk about both oceanic and atmospheric
mass (water or air) transports in Sverdrups (Sv):

Gulf Stream 30-120 Sv
Antarctic Circumpolar Current~ 180 Sv

Atlantic MOC ~ 16-20 Sv

westerly winds/jet stteam ~ 500 Sv
atmospheric MOC ~ 50 -100 Sv



Hydrostatic
pressure difference
= vapor pressure of
water (as a function
of temperature

An evacuated glass vessel with water in it illustrates the Clausius-Clapyron relation
between vapor pressure of water and temperature. The water is pushed from the vessel in
my hand to the ‘cold ball’, and the vapor pressure difference between the two ends is close
to the hydrostatic pressure measured by the column’s vertical displacement. One can fill
out the curve and see the greater sensitivity (to temperature) of water vapor production at
high, “tropical’ temperature. This all works because we shake the vessel so that a thin film
of water lies under my warm hand. It illustrates a key variable in the climate system.
When shaken this water “clinks’ like metal,vapor cavities opening up and slamming shut.



Moisture flux during high NAO: concentration in the high-
latitude storm tracks of the ~ 2 petawatts of latent heat flux ... which is
~0.7 Sverdrup (0.7 megatonnes/sec) of freshwater flux

1993 JFM 1000mb moisture flux 1 Jan 1993 velocity column integrated
water vapor (red=high, blue=low)
and w.v. flux along
50N and 60N (yellow curves)

mean hum flux 1000mb jfm233 s=6




cold-air outbreaks: a source of deep convection
(surface air temperature, 2 Jan 1993)

Mardic Seas 1993 Jan 2 SAT
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2. Atmosphere/ ocean forcing
Etfect on subpolar gyre of the Atlantic, and Greenland Sea:
enhance air/sea heat flux: much intensified at higher model
resolution

T95 (210 km grid) T255 T799 (25km grid)
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Downslope winds increase wavedrag (by Bernoulli) here in a layer of CO2




Effect on subpolar gyre of the Atlantic, and Greenland Sea:
enhance air/sea heat flux: much intensified at higher model
resolution
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Principal eof of sea surface elevation, 1992-20006, which 1s mostly a simple

trend, showing deceleration of the subpolar Atlantic gyre over 15 years
Hdkkinen & Rhines 2004 Science
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Principal eof of sea surface elevation, 1992-20006, which is mostly a simple trend,
showing deceleration of the subpolar Atlantic gyre over 15 years
Hdkkinen & Rhines 2004 Science

(update using only TOPEX/ Poseidon and Jason-1 data, time period covered: October 1992 to March 2005,
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satellite altimetric height (AH)
sea surface trend, 1992-2006
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North Atlantic ow s s tow

Pattern is similar to

ALT, 2003/05 - 1993/95 North Pacific.

Altimetric surface
7[6 Subpolar gyre

decreasing in
strength (Hakkinen
and Rhines, 2004)

height trend

Willis-B, SH 0/750 db:

2003/05 — 1993/95 High salinity,

reversing the
previous decadal
freshening (Hatun
et al, 2005, Peterson
et al, 2006) is
attributed to
increased input of
subtropical waters.

Steric surface
height trend

Colors: Argo - WOAQ1
upper 200 m salinity anomaly

Contours: Argo DH 0/2000 db

Lk |

Sfigure from D. Roemmich (NASA OSTST, Hobart, 2007); 2
Willis. Roemmzich ¢ Cornuelle. 2002 TGR
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accompanying surface SP gyre deceleration is the
opening of the eastern Atlantic meridional pathway to
stronger advection of subtropical waters by NAC
extension (Hatun et al.Science 2005).
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1991-1995

o ‘departure’
Lagrangian-
mean flow: drifter
released in a
subtropical Gulf

_ , Stream box (red,
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Sea-surface height anomaly vs. distance and time: subpolar Atlantic

time/ latitude at 35W longitude ~ North Atlantic Current
time/ longitude at 46.9N latitude
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Where is air-sea heat flux most intense? January (W m-2)
(SOC/NOCI1.1a climatology based on COADS)

ocean heat balance |h + lw + sh + sw watts per square meter January NOC
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The air/sea heat flux seen by the atmosphere

(latent+sensible+long-wave rad)

and by the ocean (latent+sensible+long-wave + short

wave solar rad)

ocean heat balance Ih + b + sh + 5w watls per sglare meler January NOC
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the sun heats the ocean, but does not cool the atmosphere: so the

right-hand flﬂure shows much bigger warming of the atmosphere
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Annual average ratio of convergence of heat flux by ocean
circulation divided by annual average heating of the atmosphere

by ocean: (LH+SH+LW+SW)/(LH+SH~+LW)

ratio of ann av Focean=LH+SH+LW+SW to annual average net Fatmos=LH+SH+LW
T T




Held et al. (J.Clim.02) 100mb-1000mb diabatic heating for January

30N 72

3054 »

60S ~
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FiG. 8. The column-averaged diabatic heating field in Jan obtained from the NCEP~NCAR
reanalysis as described in the appendix. The conwour interval is 0.5 K day '.






viscous overturning in a rotating cylider:
the radial/vertical plane transmits stress from the top plate (which is at rest
in the laboratory frame) and the bottom of the cylinder (which is rotating)

-

sugar

Syrip




Overturning cells in an annulus of
fluid between concentric cylinders
(the inner cyclinder 1s rotating, the
outer cylinder is stationary
(Taylor-Couette tlow).

The cells transmit torque between
the solid cylinders more strongly
than would pure viscous diffusion.

(The same 2D equations govern
thermal convection, and the
Nusselt number expresses the
analogous increase in heat flux
above the diffusive rate).







Sink-driven flow in a rotating, stratified fluid: the cyclonic spin of the fluid
would be resisted by bottom Ekman friction (and all radial inflow
concentrated there in this tornado vortex); However, stable stratification
resists and forces continuing MOC within the fluid. The azimuthal velocity

GED lab, Untv of Washington



Dense plume flowing down a sloping valley in a rotating fluid
(model of dense downslope flows in the Weddell Sea)
Elin Darelius, Univ of Washington GFD lab

a )

particle paths are helical,
with Ekman driven meridional
overturning transmitting the

boundary stress into the
fluid.  (Looking up the sloping
valley)

Figure 17: The "Ekman Heliz” traced out by dye injected in the botlom boundary

layer seen a) up the canyon and b) from above. The secondary cireulafion conses a

particle to follow a heliz like path doun the canyon.



The zonally averaged Ply,2) meridional streamfunction x-averaged
(),0). in density space (0=potential density)

overturning streamfunction,
North Atlantic/Arctic model of
Hakkinen driven by NCEP
winds and temperatures

This Image of the ocean circulation /s the
usual output of climate models; many
essential processes are /made invisible...the
east-west detall of the previous S/ides.
These ‘detalls’ are likely to be essential to
unaderstanaing the global ocean transports.

The tenadency for dominant sinking south or
Greenland in low-resolution climate models
IS widespread. here in density- latitude
space the streamiunction reveals higher
/atitude sinking and dense overflows.

The difference is expected from the east-
west tilt of potential density surfaces, so
that equal and opposite meridional velocities
at the same depth z may have very different
densities.

Depth

Balley, Hakkinen, Rhines
Climate Dynamics 2005 41



The sinking region of the deep circulation 1s not usually
correctly resolved in ocean models; here a bottom boundary
layer parameterization improves the sinking of dense water
Nakano & Suginahara 2002 JPO
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Lumpkin & Speer’s JPO 03 discussion of the Atlantic MOC, here plotted against potential
density and latitude. Even though we know there is much east-west structure (boundary
currents, horizontal gyres as in Reid’s maps) the zonally averaged MOC ‘looks like’ the
simple 2-dimensional box models of the circulation
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Fie. 9. Side view of the North Atlantic mendional overtumims, contoured m 1-5v mtervals, superimposed on zenally averaged
(top) salmity and (bottom) oxygen (ml L") calenlated from chmatelogy (Gowretskl and Jancke 1998). Light gray curve: densest
outcropping laver, estmmated from COADS climatelogy. Dark gray cwrve: crest of the Mid-Aflantic Fadge, including the Azores
Flatean and Iceland



Figure 4. Vertical-meridional section of salinity at 24°W in the South Atlf}ntic. Data
sources are as in Fig. 2, and the heavy dashed lines are the potential density surfaces
highlighted in that figure. The salinity minimum diving down at 52°S and ht_aading qo_mh
is AAIW. The salinity maximum below that, starting from the South Atlantic and rising
and growing weaker into the Weddell Sea is NADW. The highlighted density surfaces
were chosen to include this salinity maximum.
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The ACC 15 the only ocean current
with The Problent wmw o o meridionain, given
the absolute angular momentun constraint)..) €1 it has
ample topographic bottom slopes to
lean on: these clearly balance the
zonal wind stress that drives this
greatest of all ocean currents

This may be a dominant site of

upwelling in the global MOC
(with respect 2 and potential
density)

Salinity at 24W longitude
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A change in the MOC transport may be associated with some measurable change in the meridional
density gradient. HadCMN3 finds a very close correlation between Atlantic overturning rate and the S-IN
gradient of steric height from 308 - 60N through the W Atlantic. But, there is a possible oversensitivity o,
models to subpolar buoyancy/ 1 abrador Sea.



Observations of the MOC in the I.abrador Sea andlceland-
Scotland Ridge:

Temperature, salinity, oxygen, fluorescence, particle scattering,
vertical velocity, depth-avereaged horizontal velocity all for 0.5

Watts power

for publications visit


http://www.ocean.washington.edu/research/gfd/papers-rhines.html

the classic way to do subpolar hydrography (R/ V" Knorr, R.Pickart photo)




Charlie Eriksen with a potential customer




Wait for a nice day and zoom out to deep water...
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potential temperature along glider tracks: ix2003-iv2005

-Arctic waters from Baffin Bay;
-warm Irminger Sea water from boundary
current along w. Greenland

-thin, cold, low-salinity surface layer advected
over-top of Labrador Sea from Greenland coast

Labrador Seagiiders 82000 3- 402005

1200

Seaglider ribbon section viewed from NE; Labrador Sea looking from NW

o1



aeptn (m)

The ribbon pulled taut: Seaglider 014: 1200 profiles of temperature, salinity, oxygen, chlorophyll... Oct 04-April 05
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advection of low salinity surface layer off the west Greenland coast
hapes both deep convection region, LLabrador Sea Water production and

primary spring plankton bloom (Hatun, Eriksen & Rhines 2007 JPO)

black contours:
Lavender ARGO

Streamfunction

grey shades: altimetric
EKE

colors: depth of winter

convection in 1968.
from Pickart et al. 2002)
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AQ

Day: 088 Year: 2005

Cold shelf water (purple) streams
off the Greenland shelf. Seagliders
014 and 015 are embedded in this
Jet

40T

day 089 05




The Greenland waters reaching out over the Labrador Sea also carry strong
primary productivity with them...as seen in SeaWIFS ocean color (May 2004)

o =



SeaWiFS ocean color: 2005 days 91-120;
two Seagliders pass through this bloom
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channels and conduits for heat- and fresh-water

transport
Enka Dan temperature seclion, 60°N warm, saline waler moving
Labrador-Greentand-Rockall-keland north from the subtropics
Worthington-+Wright, 1970 i_l

L o o | WHNES TMERE SeRSHTE
Shallew contmendal shelfl aronlation provades shallew e o Greendan®®s o opper ocean o salinity
A i ik
soniirwand flow and FW trmsprt. Global climate models o o I""fm_ walrrs
o rot hove continental shefves!



5. Deep Ocean overturning circulations at the ‘headwaters’ of the global MOC

exchanges across the Iceland-Faroes-Shetland Ridge and Channel

latitude

2000

Iceland

Faroes

E1 ,Oﬂgimdp




B, Hansen, & sterfis S Progress in Qoeanography 45 (20000 FO8-208

Fiz & Preliminary water balance in 5v for the Anctic Meditemmanean,

Hansen & Osterhus PiO 2000

121

loeland

Fracturo Tome ~ f—ro :
B 500m 15 500m - Z000m 2000m - FN00m = J0030m

Fiz. 34 "Best’ estimetes of foeland-Scofland overflow fimes (in Sv) in different areas. Comtimious
arrows mitcate fux of NEATW+NADW. Dashed amow ndicazs fis of MEIW. Also shoam by a domzd
arrow 15 the estimated overfiow through the Dermark Siraif according to Dickson and Browm (1894)
Water emtrzined affer the overflow has passad the Greenlamd-Scotand Ridss 1s not ncloded in the
fhue values,

60



Water-mass transformation on /S plane:
el Mauritzen et al. 2005 DSR: mixing downstream of the final sill dilutes the dense cold
water, with impact on the global MOC

Faroe-Bank Ch

Fig. 5. Water-mass transformation deep in the Faroe-
Bank Channel, displayed as transport on the 8/S plane at successive sections from the entry (section B, upper left,
westward to sections D, F and finally H at the exit to the [FR, from Mauritzen ef al., 2005. The deep overflow mixes to
warmer, saltier values downstream in the FBC, emerging much less dense than it enters.
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Potential temperature to 7 November 2007 Seaglider
104 Iceland-Faroe Ridge
686 hydrographic profiles during this 3 month

mission
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Depth (m)

Temperature and dissolved oxygen profiles
dive 343 1in Faroe Shetland Channel
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Temperature section following glider 101 (Nov 2006-March 2007)
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depth {m)

Seaglider 101 9 June-30 Aug 2008: temperature section
on south slope of Iceland-Faroe Ridge (plus north-south section at end...like
Poseidon section of Meincke, 1976). Thin, cold bottom layer 03577
encountered widely 31 Aug 07
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158 B Honeen, § Osterhus )/ Progress In Oceanograply 45 (20000 100208

F'lg 32 Tl:mpnuuu tn} and ul.i:lil)‘ {'l;l} o0 A seciron crosami the Ieeland-Faroe Rl.d.gl: Dr.'l:nlpiv;d b}'
RV Poseidon m 1977 {location shown on Fig 31), Adapied from Meincke (1978)

South North
Iceland Faroe Ridge ‘Poseidon’
1977 Section (Meincke 1978)
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16Aug07-30Aug07 Sgi01 Dives:354:450 Blue Backscatter [counts|
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close to the Poseidon section on the previous
slide, a Seaglider section...blue-light particle
backscatter showing biological activity and

potential density, salinity, Iceland-Faroe
Ridge, SG101 Aug 2007
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fluorescence and oxygen saturation

16Aug07-30Aug0? Sg101 Dives:354:450 Fluorescence [counts] 16Aug07-30Augl? Sgi101 Dives:354:450 Dissoived Oxygen [% saturation]
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Depth {m)

Seaglider 104 dive 218 15 x 2007 Iceland Faroe Ridge
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SG104 leeland Scotland Ridge, 31 August 2007, dive 218 started 14-Oct—2007 22:01:27
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Seeking the cold, thin overflows on the Iceland-Faroe Ridge.
Dive Bottom Temperature [°C] 13 Nov 06 - 27 Aug 07
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Kyoto FDEPS lectures 4-7 xi 2007
Dynamics of oceans and atmospheres
P.B. Rhines
University of Washington

ALL DAYS

1. rotating, stratified fluids: oceans and atmospheres
— vorticity: a vector-tracer in classical homogeneous fluids
geostrophic adjustment, thermal wind

2. wave dynamics: fundamentals, group velocity, energetics, ray
theory

potential vorticity (PV)
- vortex stretching, Prandtl’ s ratio, geography of PV
3. Rossby waves

4. instability => geostrophic turbulence; subtropical gyres:
dynamics, jets and gyres, topography effects

5. Case study of topographic effect on atmospheric circulation:
Greenland and Atlantic storm track.

6. Teaching young undergraduates about the global environment?

7. Seminar: subpolar climate dynamics observed from above and
below: meridional overturning circulations (MOCs) altimetry and
Seagliders






FDEPS Lectures, November 2007
P.B. Rhines, Oceanography and Atmospheric Sciences, University of Washington

www.ocean.washington.edu/research/gfd

These lectures will address the dynamics of oceans and atmospheres, as seen through theory, laboratory
simulation and field observation. We will look particularly at high latitudes and climate dynamics of the ocean circulation
coupled to the atmospheric storm tracks. We will emphasize the dynamics that is difficult to represent in numerical
circulation models. We will discuss properties of oceans and atmospheres that are both fundamental, unsolved questions
of physics, and are also important, unsolved problems of global environmental change.

Lecture 1:

Is the ocean circulation important to global climate ? Does dense water drive the global conveyor circulation?
Fundamental questions about oceans and atmospheres that are currently under debate.

The field theory for buoyancy and potential vorticity.
Basic propagators: Rossby waves and geostrophic adjustment.
Potential vorticity: inversion and flux.
Lecture 2:
How do waves and eddies shape the general circulation, gyres and jet streams?
Almost invisible overturning circulations.
Lessons from Jupiter and Saturn.
The peculiar role of mountains, seamounts and continental-slope topography.
Lecture 3:
Dynamics of ocean gyres and their relation with the global conveyor circulation.
Water-mass transport, transformation and air-sea exchange of heat and fresh water.
Ocean overflows and their mixing.
Decadal trends in the global ocean circulation.
Lecture 4:
Heat, fresh-water, ice: convection in oceans and atmospheres and the texture of geophysical fluids.
Lecture 5:

Teaching young students about the global environment using the GFD laboratory: science meets energy and
environment in the lives of Arctic natives

Seminar:
Exploring high-latitude ocean climate with Seagliders and satellites



These are unusual times we live in....

# Congratulations Nobel Peace
Laureates;

)53

o j& #* Fundamentals of our basic science
e W RN & 1 of circulation and climate are

| | under debate (what drives the global

oceanic overturning circulation?
1s the ocean important to climate?’...)

= We are about to hit the wall
(the exponentials of global change);

# Qur science is never far from the public interest...and the public
interest 1s disturbingly remote from the integrity of the biosphere;
=>there has never been a more important time to engage in

teaching broad environmental science to young people. "



Kelvin waves, inertial waves in shallow rotating fluid
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