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The Madden-Julian oscillation — a natural fluctuation of the tropical

climate
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The Madden-Julian oscillation — a natural fluctuation of the tropical
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The Madden-Julian oscillation — a natural fluctuation of the tropical
climate
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The “Madden-Julian oscillation” (MJO) propagates eastward
In a belt around the equator

Statistical composite MJO in outgoing longwave radiation and
lower tropospheric wind (Wheeler and Hendon 2004)
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Statistical composite low-level flow (Wheeler and Hendon 2004)
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Zonal/vertical circulation and temperature along equator
(Zhang 2005, Rev. Geophys.)
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The MJO is a translation of the planetary-scale zonal
overturning (Walker) circulation
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Humidity structure in longitude and pressure
(Zhang 2005, Rev. Geophys.)
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The MJO is an envelope for higher-frequency disturbances
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We now have significant forecast
skill, with dynamical models
beating statistical

(Kang and Kim 2669)
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FIG. 7. Correlation skills of AGCM (long- and short-dashed line)
and CGCM (dashed line) for RMM1 and RMM2 as a function of
lead time, and the MREG (solid line).
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Numerical simulations are not so bad any more... but
there is no agreement on the basic mechanisms despite

~4 decades of study

Surface pressure _spectrum_, Helium spectral lines
Nauru Island, tropical Pacific
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Spectral analysis shows that the MJO is not a Kelvin wave...
so what is it?
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Questions

What is the MJO? What are the fundamental
dynamics?

What sets the scales: spatial scale, and frequency or
phase speed?

Why does it go eastward?

What is the energy source?



| will argue that cloud-radiative feedbacks are

essential to the existence of the MJO.

2001
This is not a new idea (e.g., Raymond 2666, Bony and
Emanuel 2005), but is probably not broadly accepted
yet.

Historically nearly all theories of transient meteorological
phenomena (MJO, waves, TCs...) over tropical oceans
ignore cloud-radiative feedbacks.

Presumably this is because radiative cooling variations
are << convective (condensation) heating variations.

But if conserved variables (MSE, moist entropy) are what
matter then condensation heating is irrelevant!
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Observation: Intraseasonal rainfall variance is greater over
ocean than land. Suggests a role for net surface heat flux.

Intraseasonal rain variance

30-90 Day TRMM Variance (May-October)
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Sobel, Maloney, Bellon, and Frierson 2008: Nature Geosci., 1, 653-657.



Emanuel (87) and Neelin et al. (87) proposed that the MJO
Is a Kelvin wave driven by wind-induced surface fluxes
(“WISHE")
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This idea has been somewhat abandoned because the
real MJO does not look quite like the original WISHE theory

Observed cloudiness and wind from TOGA COARE
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Strongest winds and fluxes are in phase with or
lag precipitation, and lie in westerlies

Chen, Houze and Mapes 1996



But the real MJO does have significant net surface heat
flux variations, roughly in phase with convection
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But the real MJO does have significant net surface heat
flux variations, roughly in phase with convection
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Over land, there can be no significant net flux variations
on intraseasonal time scales - so if net flux were important
to ISO convection, we’ d expect stronger ISO over ocean
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In a number of models, surface fluxes are important to the MJO
—e.g. GFDL AM2 (after Tokioka fix)

Lag Regression 850 hPa U: Nov-Apr (Tokioka)
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In other models, radiative feedbacks are important while
surface turbulent flux feedbacks are not — but both are MSE

Sources
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Moisture/convection feedback

In many models (maybe all that have been tried),

a weak MJO can be strengthened by making deep
convection more sensitive to free-tropospheric
humidity — that is, inhibited by dry air above the PBL.



E.g., AM3 — Donner et al. (2011), Benedict et al. (2011)
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The improvement in intraseasonal variability comes at the cost of biases,
similar to other models (Kim et al. 2011)



So, the MJO is...

* Not a Kelvin wave

» Has convection controlled by surface
fluxes and radiation

¢ Sensitive to moisture



So, the MJO is...

* Not a Kelvin wave

» Has convection controlled by surface
fluxes and radiation

¢ Sensitive to moisture

Sounds like what we call a “moisture mode”
(Neelin and Yu 1994; Sobel et al. 2001; Fuchs & Raymond,
Majda & Stechmann, Kuang, Sobel & Maloney 2012, 2013)



Aside: the MJO accelerates once it reaches the Pacific, and
becomes more Kelvin-like. If there is a pure moisture mode, it’s
in the Indian ocean, & maybe western-most Pacific.

Lag Regression 850 hPa U: Nov-Apr (NCEP)
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By “moisture mode” we mean (at a minimum) a dynamical
mode which depends on prognostic moisture:

oT/ot = ...
ou/ot = ...

not, e.qg.,

oT/ot = ...
ou/ot = ...

The majority of idealized tropical dynamics models are of
the latter form, truncating out the moisture mode.



Consider a moist static energy equation of the form
dh/dt=S, where S is sum of advection, surface fluxes,
radiation... and h is function of (x,t)

h S
If S leads h, disturbance
goes eastward
—_>
S

h
h
If S leads h, disturbance
Q goes westward

N
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Consider a moist static energy equation of the form
dh/dt=S, where S is sum of advection, surface fluxes,
radiation... and h is function of (x,t)

h
If Sisin phase with
h, disturbance grows
S
h S
\ /1\ If S is out of phase
\/ \ with h, disturbance
decays




A semi-empirical moisture
mode theory

Sobel and Maloney 2012, 2013 (JAS)



The linear model in a nutshell

oW’ oW
ot - Ox

— _—MP' +E —(1- MR

W’ is perturbation column moist static energy;
U is constant background wind;

P" =P (W’ )—inlinear case W’ /7,
E’ =cu’; zonal wind anomaly is computed diagnostically
from P’ using projection (Green’s) function;

u(zx,t) = /G(x|x’)P(x’,t)dx’. (I'll explain more in a moment)
R =rP’; )
Normalized gross moist stability M is constant, <1.



A note on the dynamical role of radiation,
via the single-column limit. Our MSE equation is:
oW’ oW’ - -
— 4+ UU——=-MP' +EF - (1-MR
ot ox ( )
Now assume steady state and neglect advection, we
can solve for precipitation:

~ ~

P=M'E —-(1-MR]

Now we know M < 1, maybe << 1

Remember R is radiative cooling (= minus radiative heating);
S0 a decrease in radiative cooling leads to an increase

in precipitation. This is the opposite of what happens in
radiative-convective equilibrium! Dynamics changes
everything, RCE is a bad model locally.



Gill (1980) wind and geopotential for localized heating (at 0,0)
linear, damped, steady dynamics on equatorial beta plane

Equatorial zonal wind response
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Compute zonal wind u from precipitation P via a projection operator:

u(x,t) = /G(a:|:c’)P(x’,t)dx/.

Using Gill dynamics:
G(z|z') = —Ae @)L 2> o
G(z|z') = 3A3@ TV ¢ < 4.

Length scale L = group velocity of free Kelvin wave * damping time scale.



Now put that all together, linearize (assuming background
low-level westerly winds), and compute the growth
rates and phase speeds of the normal modes as function of

zonal wave number.

If this is a good model for the MJO, we would like to see
an unstable mode (positive growth rate), maximizing at low
wave number (long wavelength), with a slow eastward

phase speed.



Linear model: all modes are unstable due to WISHE, but
westward-propagating (in mean westerlies)

Most unstable wavelength is ~decay length scale
for stationary response to heating L (here 1500 km);
at this wavelength LH flux and humidity most in phase
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Wind-evaporation feedback induces growth and westward
propagation; cloud-radiative feedback induces growth and

no propagation

Surface flux lags convection,

thus lags moisture, so drives westward
progagation; but lags by less than «/2

S0 also causes growth

W’

v

W,

Since radiative heating

~ precipitation ~ moisture,
cloud-radiative feedback

is destabilizing. No phase lead
or lag, so doesn’ t

cause propagation



We need an MSE source that /eads convection to the east,
to produce eastward propagation.

Frictional convergence in easterlies (WWang 1988) is one
possibility. We expect this to induce shallow ascent, which
Is a net source of MSE, i.e. M <O0.

Zonal advection will also work, if we have a +ve mean
background zonal gradient (q increases to east). Then,
easterlies are moistening. We saw this in DYNAMO.

Or...



In simulations, MJO modulation of dry air advection by
synoptic-scale transients has been found to act as anomalous

MSE source that leads convection (Maloney 2009, Andersen
and Kuang 2012)

synoptic-scale eddies
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We can add any of these processes to our idealized
model very crudely as an MSE source proportional to minus
MJO (°) zonal wind. E.g. if ” is a synoptic-scale perturbation

-0,(v''q ") =-ku" (k>0 gives relative moistening in easterlies)



We can add any of these processes to our idealized
model very crudely as an MSE source proportional to minus

MJO (°) zonal wind. E.g.if © is a synoptic-scale perturbation
-0,(v''q ") =-ku" (k>0 gives relative moistening in easterlies)
But also surface flux is proportional to zonal wind.

E" =cu’,sonetE-d/(v q )= (c-k)u



We can add any of these processes to our idealized
model very crudely as an MSE source proportional to minus
MJO () zonal wind. E.g.if " is a synoptic-scale perturbation

-0,(v''q ") =-ku" (k>0 gives relative moistening in easterlies)
But also surface flux is proportional to zonal wind.
E" =cu’,sonetE-d(v q)=(ckju

To cause eastward propagation, the advection has to

be stronger than the surface fluxes, (c-k)<O0.

In that case it also causes damping, since u and P are
positively correlated.

Thus we have to make the radiative feedback strong
enough to overcome this if the mode is to be unstable —
sufficiently large feedback parameter r.



If we do all this, we get eastward propagation, and largest
growth rates at shortest and longest wavelengths
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If we do all this, we get eastward propagation, and largest
growth rates at shortest and longest wavelengths

Small amount of horizontal diffusion is enough to Kill
small-scale instability. Then only largest scales are

phase speed (m/s)
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Surface fluxes always lag convection; would drive MJO westward.
Radiation must be important for growth; advection for propagation.

LW flux from
atmosphere

LH flux from
surface
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What do MSE budgets look like for the real
MJO?

Results from the tropical Indian ocean during the
CINDY/DYNAMO field program, by Shuguang
Wang and Daehyun Kim
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Figure 1. Hovmoeller diagram of 10°S-10°N averaged
precipitable water (mm, shaded), precipitation (mm day',
contour 10), and 850hPa zonal wind (m s-1, arrows) during the
CINDY/DYNAMO period. By Daehyun Kim
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Figure 2. Area-averaged (73-80°E, Eq.-5°N) time-series of a)
rainfall (mm day"), b) precipitable water (mm), and c) column
integrated MSE (x107 J m?) (Daehyun Kim & Shuguang Wang)



MSE budget from DYNAMO: radiation = surface flux

Radiation + Surface fluxes
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5-day average
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MSE budget from DYNAMO: +ve advection (esp horizontal)
leads convection in 1 case; -ve shuts it down in the other.

Horizontal and vertical advection
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Weekly means from
CINDY/DYNAMO period:
Column water vapor (color, mm)
850 hPa wind vector,
Precipitation (mm/d, interval 10)

Plots by Daehyun Kim
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Weekly means from
CINDY/DYNAMO period:
Column water vapor (color, mm)
850 hPa wind vector,
Precipitation (mm/d, interval 10)

Plots by Daehyun Kim
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Weekly means from
CINDY/DYNAMO period:
Column water vapor (color, mm)
850 hPa wind vector,
Precipitation (mm/d, interval 10)

Plots by Daehyun Kim
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Reanalysis MJO composite (not DYNAMO) moist static energy
budget: horizontal advection seems to control propagation;
radiation dominant for growth

<MSE> tendency

<MSE> tendency
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Conclusions

We argue the MJO is a moisture mode.

This means that sources and sinks of moist static
energy control both the growth and propagation of
the mode.

Need moistening in easterlies for eastward
propagation — has to be advection of some kind, but
several possibilities,

Cloud-radiative feedback is necessary to destabilize
the mode. That is, the MJO wouldn’t exist without it.

“self-aggregation of convection on the equatorial beta
plane”
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