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3.1. The Earth’s magnetic field

(3) Core dynamics and the geodynamo
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• Almost all we know about the Earth’s core comes from observing the 
magnetic field it produces.


• Measurements of the direction of the magnetic field at the surface of the 
Earth were available before Colomb’s expeditions (1492).


• Intensity measurements began during La Pérouse’s expedition (1785), and 
became absolute measurements with Gauss (1832) (geomagnetism).


• Human-made artefacts such as baked clays record the ancient magnetic 
field back to ~5000 years BP (archeomagnetism).


• Lavas and sediments record the magnetic field that existed when they 
formed, back to 3.45 Ga, arguably 4.2 Ga (paleomagnetism).

The Earth’s magnetic field

(3.1) The Earth’s magnetic field
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• From compilations of navigators’ logbooks, historical archives and 
observatory data (Jackson et al, 2000).

The historical magnetic field at the Earth’s surface

(3.1) The Earth’s magnetic field
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The historical

Jackson et al, 2000
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Assuming that 
the mantle is 
electrically 
insulating, one 
can continue 
the magnetic 
field from the 
Earth’s surface 
down to the 
core-mantle 
boundary 
(CMB).

Downward continuation of the magnetic field to the CMB

Finlay & Jackson

(3.1) The Earth’s magnetic field

j = 0 ⟹ ∇ × B = 0

B = ∇ψ

∇ ⋅ B = 0 ⟹ ∇2ψ = 0

⟹ ψ ∼
1

rl+1
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The historical magnetic field at the CMB

(3.1) The Earth’s magnetic field
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Jackson et al, 2000
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• From archeomagnetic data and rapidly deposited lake sediments (Korte et 
al, 2000).

The Holocene magnetic field at the CMB

(3.1) The Earth’s magnetic field
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The Holocene magnetic field at the CMB

Korte et al, 2011

(3.1) The Earth’s magnetic field
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Magnetic intensity in the last 800,000 years

(3.1) The Earth’s magnetic field

Tric et al, 1994From IODP 
sedimentary 
cores (Tric et 
al, 1994).
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• Magnetic anomalies over the North-Atlantic reveal many magnetic field 
reversals back to 180 Ma (extracted from the Magnetic Anomaly Map of 
the World, Korhonen et al, 2007).

Magnetic field reversals from oceanic magnetic anomalies

(3.1) The Earth’s magnetic field
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Magnetic field reversals from oceanic magnetic anomalies

(3.1) The Earth’s magnetic field

Korhonen et al, 2007
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Magnetic field reversals in the geological history

Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2012, Geologic Time Scale v. 4.0: Geological Society of America, doi: 10.1130/2012.CTS004R3C. ©2012 The Geological Society of America.
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• How is the magnetic field produced in the Earth’s core?


• Why is it mostly dipolar and aligned with the axis of rotation?


• Can we relate magnetic secular variation to motions in the core?


• Can we predict the future evolution of the magnetic field?


• What controls its intensity?


• What causes reversals? 


• How long has the Earth had a magnetic field?

Questions…

(3.1) The Earth’s magnetic field
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3.2. Dynamics of rotating fluids

(3) Core dynamics and the geodynamo
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• In contrast with the mantle, the liquid core is a very low viscosity fluid. In 
fact, the kinematic viscosity of liquid iron at core conditions is expected 
to be about the same as water: ν = 10-6 m2/s.


• As in the atmosphere or the ocean, flow in the core is strongly affected by 
the Coriolis force, due to the Earth’s spin.


• To decipher what happens in the core, and how the magnetic field is 
generated, it is essential to inject what we know of the dynamics of 
rotating fluids.

Foreword

(3.2) Dynamics of rotating fluids
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3.2. Dynamics of rotating fluids


     3.2.1. Geostrophic equilibrium


     3.2.2. Taylor-Proudman theorem


     3.2.3. Inertial waves


     3.2.4. Rossby waves


     3.2.5. Convection in a rotating sphere

Outline

(3.2) Dynamics of rotating fluids
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3.2.1. Geostrophic equilibrium

(3.2) Dynamics of rotating fluids
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• Let’s recall the Navier-Stokes equation in the Boussinesq approximation:

The Navier-Stokes equation

ρ0 ( ∂u
∂t

+ (u ⋅ ∇)u)
inertia

+ 2ρ0Ω × u

Coriolis

= −∇P
⏟
pressure

+ ρ0 (1 − α(T − T0)) g

buoyancy

+ j × B
⏟
Lorentz

+ μ∇2u

viscous

(3.2) Dynamics of rotating fluids
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• We have seen that the viscosity of the liquid is very small in the core. In 
the Navier-Stokes equation, a dimensionless number compares viscous 
forces to the Coriolis force. It is called the Ekman number, and can be 
written:


where Ω is the angular velocity of the rotating Earth, and ro the radius of the 
core. Entering expected values, we find:


Hence, viscous forces should play a very limited role in the core.

The Ekman number

E =
ν

Ωr2
o

E ∼ 10−15

(3.2) Dynamics of rotating fluids
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• The time-scale of the secular variation of the Earth’s magnetic field 
(centuries) suggests flow velocities U of the order of a mm/s at most. The 
Rossby number compares inertia to the Coriolis force. We write it:


Plugging in our typical values, we get:


Hence, inertia should not be a major player either.

The Rossby number

Ro =
U

Ωro

Ro ∼ 10−6

(3.2) Dynamics of rotating fluids
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• We thus get:


• Ignoring buoyancy and the Lorentz force for the moment, the Navier-
Stokes equation simplifies into the simple balance:


• This is called the geostrophic equilibrium.

The geostrophic equilibrium

ρ0 ( ∂u
∂t

+ (u ⋅ ∇)u)
inertia

+ 2ρ0Ω × u

Coriolis

= −∇P
⏟
pressure

+ ρ0 (1 − α(T − T0)) g

buoyancy

+ j × B
⏟
Lorentz

+ μ∇2u

viscous× ×
2ρ0Ω × u

Coriolis

= −∇P
⏟
pressure

(3.2) Dynamics of rotating fluids
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• The geostrophic equilibrium plays a major role for explaining motions in 
the atmosphere, the ocean, and the liquid core. It explains why winds 
circle around cyclones (typhoons) or depressions, rather than flowing 
from high to low pressure.

The geostrophic equilibrium

(3.2) Dynamics of rotating fluids
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3.2.2. Taylor-Proudman theorem

(3.2) Dynamics of rotating fluids
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• The Taylor-Proudman theorem is a very powerful consequence of the 
geostrophic equilibrium. Take the curl of the geostrophic equation to 
eliminate the pressure term. You get:


where    is the unit vector along the axis of rotation.


• For an incompressible fluid, this yields:


meaning that flow velocity is invariant along the axis of rotation.

Taylor-Proudman theorem

(∇ ⋅ u) ̂z − ( ̂z ⋅ ∇) u = 0

̂z

( ̂z ⋅ ∇) u = 0

(3.2) Dynamics of rotating fluids
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• A famous illustration of this property is given by the formation of a 
‘phantom’ Taylor column above an obstacle in a rotating fluid

Taylor columns

Geoffrey Taylor 
(1886-1975)

(3.2) Dynamics of rotating fluids

from MITOPENCOURSEWARE: GFDVII
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Taylor column experiment
from Pascale Bouruet-Aubertot

https://pba.locean-ipsl.upmc.fr/TaTou.html
(3.2) Dynamics of rotating fluids

https://pba.locean-ipsl.upmc.fr/TaTou.html
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3.2.3. Inertial waves

(3.2) Dynamics of rotating fluids
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• In a rotating fluid, the Coriolis force acts as a restoring force enabling the 
propagation of waves, called inertial waves.


• We restore the time-derivative term in the Navier-Stokes equation and get:


• Taking the curl, we introduce the vorticity                   and get:


• Taking the curl once more, applying a time derivative, we get:

Inertial wave equation

∂u
∂t

+ 2Ω × u = −
1
ρ0

∇P

∂ξ
∂t

= − 2Ω ( ̂z ⋅ ∇)u

ξ = ∇ × u

∂2(∇ × ξ)
∂t2

= 2Ω ( ̂z ⋅ ∇)
∂ξ
∂t

(3.2) Dynamics of rotating fluids
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• Noting that                           , we finally get:


• Plane wave solutions provide the dispersion relation:


and the phase and group velocities:


Dispersion relation of inertial waves

∂2 ∇2u
∂t2

= − 4Ω2 ( ̂z ⋅ ∇)2u

∇ × ξ = − ∇2u

ω = ± 2Ω
̂z ⋅ k
k

cϕ = ± 2Ω
kz

k2

cg = ± 2Ω
k × ( ̂z × k)

k3

(3.2) Dynamics of rotating fluids

From lecture notes of 
Cébron and Vidal, 2017.
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• Inertial waves are transverse waves. Their 
pulsation is proportional to the cosine of 
the angle θ between their wave vector and 
the axis of rotation. Their maximum 
pulsation is 2Ω. Their phase propagates in 
a direction perpendicular to their energy. 
Geostrophic motions correspond to zero 
frequency inertial waves.


• Inertial waves can be excited by oscillating 
a small disk in a rotating tank.


• In a closed container, inertial waves build 
inertial modes.

Inertial wave properties

(3.2) Dynamics of rotating fluids
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• A beautiful demonstration of the presence 
of inertial modes in a rotating sphere was 
obtained in an experiment set up in Dan 
Lathrop’s Lab at the University of 
Maryland.


• A 60 cm-diameter shell holds 110L of 
liquid sodium (a good electric conductor). 
A small B0 magnetic field is imposed.


• Magnetometers along a meridian record 
the magnetic field induced by inertial 
modes excited by a differential rotation of 
the inner sphere.

Inertial modes in a rotating shell filled with liquid sodium

Kelley et al, 2007

(3.2) Dynamics of rotating fluids

B0
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• The video shows the pattern of 
different inertial modes 
retrieved from the 
magnetometers’ records, as the 
differential rotation of the inner 
sphere is slowly ramped.


• The sound of the video is also 
built from the magnetometers’ 
records, giving the frequencies 
of the different inertial modes.

Inertial modes in a rotating shell filled with liquid sodium

Kelley et al, 2007
(3.2) Dynamics of rotating fluids

https://youtu.be/YuhlwA_wqy0
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• One crucial role of inertial waves is to build geostrophic (or 
quasigeostrophic) columns, at a speed        where    is the typical section 
of the column.

Inertial waves and geostrophic columns

Davidson, 2013

Ωℓ ℓ

(3.2) Dynamics of rotating fluids
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• In a rotating sphere, the surface condition implies that the only purely 
geostrophic flows (z-invariant) are axisymmetric azimuthal flows.


• If the sphere’s surface is a no-slip boundary, there can be no geostrophic 
flow strictly speaking. However, axisymmetric azimuthal flows can form 
provided the velocity drop at the surface is accounted for by a thin 
boundary layer, called the Ekman layer.


• Purely azimuthal flows cannot carry heat out of a spherical body. 
Quasigeostrophic flows, which retain a nearly z-invariant structure but 
allow for non-azimuthal velocities, are the structures that do the job.

Geostrophic and quasigeostrophic flows in a rotating sphere

(3.2) Dynamics of rotating fluids
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3.2.4. Rossby waves

(3.2) Dynamics of rotating fluids
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• Rossby waves are quasi-geostrophic inertial waves that feel the 
boundaries of the fluid they travel through. In a spherical container as the 
core, Rossby waves travel in the prograde direction (eastward), while 
planetary Rossby waves travel westward in the ocean and atmosphere.

Rossby waves

(3.2) Dynamics of rotating fluids

in Jault & Finlay, 2015

ωRossby = − 2Ω
βkφ

k2

β =
α
Hc

The dispersion relation reads:

with

where α is the slope of the 
boundary and Hc is the height 
of the column.

q =
ωz + 2Ω

Hc

Potential vorticy 
q is conserved
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• (hydrodynamics) Rossby waves 
should not be mixed up with 
magnetic Rossby waves, which 
travel westwards.


—> see Kumiko Hori

NB: magnetic Rossby waves

(3.2) Dynamics of rotating fluids Hori et al, 2015
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3.2.5. Convection in a rotating sphere

(3.2) Dynamics of rotating fluids
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• The Proudman-Taylor constraint represents a serious problem for thermal 
convection! Somehow, it needs to brake this constraint, that is to 
deviate from the geostrophic equilibrium. For that, one of the neglected 
term in the Navier-Stokes equation should be kept.


• Surprisingly, the best candidate is the viscous term! Whereas viscosity 
inhibits convective instability in the classical Rayleigh-Bénard problem, 
viscosity is needed for convection to start in a rotating sphere.


• This comes at a price: the viscous force has to balance the Coriolis force. 
This requires shrinking the diameter of convective cells down.

Viscosity needed!

(3.2) Dynamics of rotating fluids
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• Balancing the Coriolis force by viscous forces in the curled Navier-Stokes 
equation, we get:


• If velocity remains almost z-invariant, the Coriolis term is of order        ,


while the viscous term will depend upon the diameter    of the convective as:


      . Hence: 


 

Width of quasigeostrophic columns

2Ω ( ̂z ⋅ ∇) u = ν∇ × (∇2u)

Ωu
ro

ℓ
νu
ℓ3

ℓ ∼ ( νro

Ω )
1/3

= ro E1/3

(3.2) Dynamics of rotating fluids
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• The full theory initiated by Busse (1970) and 
completed by Jones et al (2000) confirms this scaling. 
It shows that, at threshold, convection takes the form 
of thermal Rossby waves, also called Busse 
columns. It also yields the expression of the critical 
Rayleigh number Rac and associated wave number 
mc and frequency ωc, which are found to vary with 
the Ekman number E as:

Busse columns

Rac ∼ E−4/3

mc ∼ E−1/3

ωc ∼ E−2/3

see Jones, 2015

(3.2) Dynamics of rotating fluids

Busse, 1970
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• At this stage, we estimate the diameter expected for these 
quasigeostrophic convective cells at the convection threshold in the 
Earth’s core. We get:


and we usually conclude that it is hard to imagine eddies 35 m in diameter 
and 3500 km tall…


A recent study by Guervilly et al (2018), backed up by 3D simulations down 
to E = 10-8 and quasigeostrophic 2D simulations down to E = 10-11 propose 
a different scaling, which yields a diameter of about 30 km.

… that narrow?

ℓ ∼ ro E1/3 ∼ 35 m



FDEPS 2018, Kyoto H-C Nataf / 75!48

Quasigeostrophic flow in a numerical simulation of convection

Guervilly et al, 2018(3.2) Dynamics of rotating fluids
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3.3. Dynamos

(3) Core dynamics and the geodynamo
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3.3.1. Larmor and Bullard’s disk dynamo

(3.3) Dynamos
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• In a very short note, Joseph Larmor proposed in 1919 that the 
magnetic field of the Sun, and incidentally of the Earth, could be 
produced by dynamo action.


• Years later, Ed Bullard proposed a simple thought experiment to 
illustrate this principle: the homopolar disk dynamo.

Joseph Larmor 
1857-1942

Edward Bullard 
1907-1980(3.3) Dynamos
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3.3.2. Cowling’s theorem

(3.3) Dynamos
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• The magnetic induction equation looks very simple:


• The first question one might ask is: given a velocity field u, can a magnetic field 
B grow. This is called the kinematic dynamo problem.


• Given some characteristic velocity U and dimension L of the system, a first 
answer comes from comparing induction to diffusion as given by the magnetic 
Reynolds number:


• The magnetic Reynolds number must be large enough for dynamo action to 
occur. However, not all velocity fields qualify!

Kinematic dynamo

∂B
∂t

= ∇ × (u × B)

induction

+ η∇2B

diffusion

Rm =
UL
η

(3.3) Dynamos
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• In 1934, Thomas Cowling demonstrated a theorem stating that no purely 
axisymmetric magnetic field can be maintained by dynamo action. 
This shed some doubts upon the validity of this mechanism for explaining 
natural dynamos.


•  Therefore, many theoretical and experimental efforts were devoted to 
finding a solution to this problem.

Cowling’s theorem

« It was the Larmor theory ultimately that I was criticizing » 
Thomas Cowling, AIP interview, 1978.

(3.3) Dynamos



FDEPS 2018, Kyoto H-C Nataf / 75!56

• Let’s see the essence of Cowling’s theorem.


• We define a velocity field u and a magnetic field B. Both fields are solenoidal 
(divergence-free). They can be decomposed into a poloidal component and a 
toroidal component. 


• We consider magnetic induction in a sphere, and assume that both fields are 
axisymmetric. We can then write:


where A, B and ω (fluid angular velocity) are scalar fields, and s is the cylindrical 
radius.

Cowling’s theorem

BP = ∇ × (A ̂eφ)

u = uP + s ω ̂eφ

B = BP + Bφ ̂eφ with

(3.3) Dynamos
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• The induction equation then becomes:


• These equations show that the velocity field can produce some toroidal 
magnetic field Bφ by shearing the poloidal field BP: this is the omega 
effect.


• However, the scalar A of poloidal magnetic field cannot draw energy from 
the Bφ field. Hence no dynamo: this is Cowling’s theorem.

Cowling’s theorem

∂A
∂t

= ηΔ1A −
uP

s
⋅ ∇(sA)

∂Bφ

∂t
= ηΔ1Bφ − suP ⋅ ∇(

Bφ

s ) + sBP ⋅ ∇ω
{

<latexit sha1_base64="DUSx6XUrcSaXIE6FH9TBapJL86w="></latexit><latexit sha1_base64="DUSx6XUrcSaXIE6FH9TBapJL86w="></latexit><latexit sha1_base64="DUSx6XUrcSaXIE6FH9TBapJL86w="></latexit><latexit sha1_base64="DUSx6XUrcSaXIE6FH9TBapJL86w="></latexit>

with Δ1 ≡ ∇2 −
1
s2

(3.3) Dynamos
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3.3.3. Mean field summary

(3.3) Dynamos
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• One way out of Cowling’s theorem is to allow for small non-axisymmetric 
fluctuations around the mean axisymmetric fields. One writes:


• The induction equation for the mean axisymmetric magnetic field then 
becomes:

Mean field

∂A
∂t

= ηΔ1A −
uP

s
⋅ ∇(sA) + ℰφ

∂Bφ

∂t
= ηΔ1Bφ − suP ⋅ ∇(

Bφ

s ) + sBP ⋅ ∇ω + [∇ × ℰ]φ
{

<latexit sha1_base64="DUSx6XUrcSaXIE6FH9TBapJL86w="></latexit><latexit sha1_base64="DUSx6XUrcSaXIE6FH9TBapJL86w="></latexit><latexit sha1_base64="DUSx6XUrcSaXIE6FH9TBapJL86w=">AAAC1HicjVHLTsJAFD3UF+ID1KWbRmLiirTGCOxI3LjERB4JIGnLABNK20ynJgRdGbf+gFv9JuMf6F94ZyyJLohO0/bMuefcmXuvG/k8lpb1njFWVtfWN7Kbua3tnd18YW+/GYeJ8FjDC/1QtF0nZj4PWENy6bN2JJgzdX3WcicXKt66ZSLmYXAtZxHrTZ1RwIfccyRR/UK+67Oh7M7NruCjsSz1C0WrZFmWbdumAnb53CJQrVZO7YppqxCtItJVDwtv6GKAEB4STMEQQBL24SCmpwMbFiLiepgTJwhxHWe4R468CakYKRxiJ/Qd0a6TsgHtVc5Yuz06xadXkNPEMXlC0gnC6jRTxxOdWbHLcs91TnW3Gf3dNNeUWIkxsX/5Fsr/+lQtEkNUdA2caoo0o6rz0iyJ7oq6ufmjKkkZIuIUHlBcEPa0c9FnU3tiXbvqraPjH1qpWLX3Um2CT3VLGvBiiuZy0Dwt2YSvzoq1m3TUWRziCCc0zzJquEQdDT3zZ7zg1Wgad8aD8fgtNTKp5wC/lvH0BQlElbo=</latexit><latexit sha1_base64="DUSx6XUrcSaXIE6FH9TBapJL86w="></latexit>

u = ⟨u⟩ + ũ
B = ⟨B⟩ + b̃

(3.3) Dynamos
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• The mean of the u x B product contains an additional electromotive 
force   , which is the contribution of the cross-term of the fluctuations to 
the mean induction:


• In some conditions, the electromotive force can be expressed as:


• This led to the very successful development of mean-field αω kinematic 
dynamos, which played a large role in deciphering the magnetic field of 
the Sun and the solar cycle.

Mean field kinematic dynamos

ℰ = ⟨ũ × b̃⟩

ℰ

ℰ = α⟨B⟩ − β ∇ × ⟨B⟩

(3.3) Dynamos
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3.3.4. Experimental dynamos

(3.3) Dynamos
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• Experimental dynamos were built to address some key issues, which 
evolved in time.


• The first attempts aimed at showing the reality of dynamo action, and 
rested on geometries that were supposed to yield a dynamo.


• Such experiments are difficult: the best liquid electric conductor known 
(liquid sodium) has a magnetic diffusivity η = 0.1 m2/s. In order to reach a 
value of the magnetic Reynolds of order 100, an experiment must have 
dimensions in the meter range and fluid velocities in the 10 m/s range.

Rm =
UL
η

∼
10 × 1

0.1
∼ 100

(3.3) Dynamos
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• The first experiment, due to Lowes and Wilkinson 
(1963; 1968) was inspired from the Herzenberg 
geometry (1958).


• The experiment consisted in two rotating cylinders 
embedded in a block of ferromagnetic iron (to 
decrease the magnetic diffusivity). Electric contact 
was ensured by liquid mercury.


• After some efforts, the experiment did produce a 
magnetic field. Reversals were observed in 
some cases.

Lowes and Wilkinson

(3.3) Dynamos
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• The Karlsruhe liquid sodium dynamo 
experiment was built by Müller and Stieglitz, 
following the design of G.O. Roberts (1972).


• Liquid sodium is forced into pipes that pave 
a large cylinder. In year 2000, a magnetic 
field was produced, with the expected 
geometry.


• This experiment demonstrated the validity of 
the effect of scale-separation, assumed in 
mean-field theories.

Karlsruhe liquid sodium dynamo

(3.3) Dynamos
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• In year 2000 as well, after years of efforts, Agris 
Gailitis and his colleagues got the Riga liquid 
sodium experiment become a dynamo.


• The design follows a proposal by Ponomarenko 
(1973). The dynamo onset and the geometry of 
the magnetic field were in agreement with the 
predictions.


• This dynamo gives much more freedom to the 
flow, with turbulent fluctuations around 10%. 
The saturation of the magnetic field is due to 
the braking effect of the Lorentz force on the 
swirling flow.

The Riga dynamo

(3.3) Dynamos
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• After the success of the Riga and Karlsruhe dynamo experiments, it was felt 
that experiments were needed with less constrained flows, possibly closer 
to natural situations.


• This meant an additional complexity: since the magnetic Prandtl number of 
liquid sodium is


in order to reach magnetic Reynolds number values of order 100 requires 
reaching kinetic Reynolds number of order 10 millions, i.e. a very turbulent 
flow.


• Several teams engaged in this adventure. All met a similar problem: turbulent 
fluctuations appear to change the geometry of the magnetic field the 
experiment can produce, and more annoying, to increase the critical value.

Second generation experiments

Pm =
ν
η

≃ 7.3 × 10−6

(3.3) Dynamos
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• The liquid sodium experiment of Cary 
Foret’s team, at the University of 
Wisconsin generates a very turbulent 
swirling flow in a 1 m-diameter sphere. It 
did not reach self-excitation, but showed 
that the fastest growing magnetic mode 
was axisymmetric around the rotation 
axes, in contrast with the predictions 
based on the mean flow.

Cary Forest’s experiment in Madison

(3.3) Dynamos

Spence et al, 2006
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• The VKS experiment generates a very turbulent Von 
Karman swirling flow. The experiment was designed 
to reach the dynamo threshold as estimated from the 
mean flow. No magnetic field was produced at this 
value.


• However, dynamo action was observed after 
replacing one or both rotating disk by a soft iron disk 
(Monchaux et al, 2007). The produced magnetic field 
was then mostly azimuthal and axisymmetric, in 
contrast with the expectation from the mean flow.


• Beautiful magnetic reversals are observed when the 
disks don’t spin at the same rate (Berhanu et al, 2007).

The Cadarache VKS experiment

(3.3) Dynamos
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• Series of magnetic 
field reversals in the 
VKS dynamo 
experiment.

Berhanu et al, 2007

(3.3) Dynamos

Bφ
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• Probably the most ambitious experiment was set up 
by Dan Lathrop and his team at the University of 
Maryland. The 3 m-diameter sphere holds 12 tons 
of liquid sodium! It can spin around a vertical axis, 
and holds an inner sphere that can also spin 
around the same axis.


• In contrast with other experiments, the entrainment 
of the liquid is only by friction with the smooth 
inner sphere. For that reason, although the 
experiment could in principle reach values of the 
magnetic Reynolds number as high as 900, it did 
not self-excite.

Dan Lathrop’s dynamo experiment at U Maryland

(3.3) Dynamos
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 In action at 
its 
maximum 
rotation 
frequency 
of 3.95 Hz!


 A test 
performed 
with the 
water-filled 
experiment.

Dan Lathrop’s dynamo experiment at U Maryland

(3.3) Dynamos
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 Although it did not 
reach self-
excitation, the 
experiment 
produced 
interesting 
magnetic bursts, 
which seemed to 
enhance an 
applied magnetic 
field.

Dan Lathrop’s dynamo experiment at U Maryland

(3.3) Dynamos
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• I had the chance to spend some time at the 
University of Maryland and take part to 
some of the preparatory work on the 3m 
experiment.

Dan Lathrop’s dynamo experiment at U Maryland

(3.3) Dynamos

• The geometry of Dan Lathrop’s experiment, inspired from 
the Earth’s core, is very close to that of the (much smaller) 
DTS experiment developed in Grenoble.

DTS
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• An even more ambitious dynamo 
experiment is under construction 
in Dresden, under the 
supervision of Frank Stefani.


• The driving is by precession, a 
mechanism that is a candidate 
for explaining the strong ancient 
magnetic field of the Moon.

A precession-driven dynamo experiment in Dresden

(3.3) Dynamos
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• Very small magnetic Prandtl number, as 
in planetary cores.


• Can be observed over very long times 
(overturn and magnetic diffusion time).


• Ground truth test of our theories.


• Force reasoning with real systems.


• Unexpected observations trigger new 
developments.

Dynamo experiments: pros and cons

• Difficult, expensive, and dangerous.


• Little hope for a convective 
experimental dynamo.


• Magnetic energy only a few percents of 
the kinetic energy.


• Lack fundamental ingredients of natural 
dynamos.


• Results difficult to compare with 
observations.

(3.3) Dynamos


