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Changes in vertical flow structures due to η(T )
(Solomatov, 1995)

temperature-dependence of viscosity
weak strong

T

ψ
rη 102 103 104 105

Note: The viscosity of the hottest fluid ηb is kept constant, yielding the Rayleigh
number of Rab = 107 (where Rab is defined with ηb).
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Changes in vertical flow structures (Solomatov, 1995)

Three convective regimes are identified depending on the
temperature-dependence of viscosity:

❏ “Whole-Layer” (WH) mode
(for weak dependence)

thin cold thermal boundary layer is involved
into convection at depth.

❏ Transitional mode (for moderate dependence)

❏ “Stagnant-Lid” (ST) mode
(for strong dependence)

thick and stiff cold thermal boundary layer
(or “lid”) is NOT involved into convection
at depth.
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Changes in horizontal flow structures due to η(T )
(figures from Yoshida and Kageyama, 2005)
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temperature-dependence of viscosity.
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❏ What is the relation between the changes in vertical and
horizontal flow structures ?

❏ How convection looks when viscosity is strongly
temperature-dependent ?
Is it always characterized by convection cells of small
horizontal length scales beneath cold stiff lids ?

≡ ?

❏ If not, under which conditions does convection
simultaneously have cells of large horizontal length scales
and cold stiff lids ?

∈ ? and/or ∈ ?
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Linear stability analysis on the onset of thermal convection
of a fluid with strongly temperature-dependent viscosity in
a spherical shell geometry.

❏ to classify the flow patterns of spherical shell convection,
from the changes in the vertical flow structures,

1. onset of convection in a planar layer

❏ to develop a criterion for transition into ST regime

2. onset of convection in a spherical shell

❏ to identify the transition into ST regime by using same
criterion
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Geometry

(a) planar layer (b) spherical shell

L

z T=Ts

T=Tb0 ri

ro

rT=Ts

T=Tb

γ ≡ ri/ro(< 1)

❏ Onset of thermal convection driven by basal heating
(i.e., no internal heat sources)

❏ Exponential temperature-dependence of viscosity

η ∝ exp

(

−E
T − Ts

Tb − Ts

)

❏ top/bottom boundaries are free-slip (F) or rigid (R)
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❏ Equation of heat transport
∂T

∂t
+ v · ∇T
︸ ︷︷ ︸

advection

= ∇2T
︸︷︷︸

conduction

❏ Equation of continuity (incompressible fluid)

∇ · v = 0

❏ Equations of motion (force balance)

0 = −∇p+∇ · [η (∇⊗ v + v ⊗∇)] +RaTeg

❏ Constitutive Equation (temperature-dependence of viscosity)

η = η1/2 exp
[
−E

(
T − 1

2

)]

where Ra : Rayleigh number (defined with η1/2, not with ηb)

E : temperature-dependence of viscosity

In this study, linearized equations are solved for infinitesimal
perturbations in T and v.
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Convective Instability: Grow or Not ?
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Convective instability grows up for sufficiently Rayleigh
number Ra

Ra ∝
thermal buoyancy

viscous resistance × thermal diffusion

Ra = 1000

Ra = 600



Temporal evolution of perturbation
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Growth rate a of convective instability (perturbation)
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a > 0 for growth,
a < 0 for decay,
a = 0 for neutral.

Growth rate a becomes:

❏ larger for larger Rayleigh number Ra

❏ largest for intermediate wavenumber K of perturbation
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Critical Rayleigh number (Rac): Ra which gives a = 0.
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a > 0 for growth,
a < 0 for decay,
a = 0 for neutral.

The perturbation with absolute minimum of Rac (≡ Rac0) is
most important. (because it is destabilized most easily !)



Critical Rayleigh number in spherical shells
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thin shell (γ = 0.95) thick shell (γ = 0.55)
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Note: Length scale is normalized so as to take r1 − r0 ≡ 1.

Growth of perturbation depends on

❏ Rayleigh number Ra

❏ spherical harmonic degree ℓ of perturbation

❏ thickness (or aspect ratio γ) of spherical shell
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Variations in critical Rayleigh numbers
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variations in critical
Rayleigh number Rac
and wavenumber K
with increasing tem-
perature dependence of
viscosity E.

E = ln(ηmax/ηmin)

❏ Variations of Rac on K depend on E,

❏ Absolute minimum of Rac (≡ Rac0) and corresponding K
(≡ Kc0) are also dependent on E.
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Rac0 against E Kc0 against E
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Three regimes can be identified depending on E:

E . 1.5 : Rac0 → and Kc0 →
1.5 . E . 8.3 : Rac0 ր and Kc0 → or ց (depending on b.c.)

E & 8.3 : Rac0 ց and Kc0 ր Stagnant-Lid mode



Critical Rayleigh number and wavenumber (2)
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For very strong temperature-dependence (large E),

❏ differences in top surface boundary conditions become
negligibly small.

✏ almost zero motion even with free-slip top boundaries.
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Following the idea by Stengel et al. (1982) ....

T=Ts

T=Tb0

1 stagnant lid

0

1

T1

ẑẑ

zz

In ST regime, convection begins in a basal sublayer, not in
an entire layer.

For sufficiently large E, the Rayleigh number R̂a local to the
basal sublayer exceeds Ra for the entire layer.
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Consider the ratio of sublayer’s
R̂a to Ra, in order to confirm
the transition into ST regime
at E ≃ 8.
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When E > 8 there exists a range
of ẑ (< 1) which allows R̂a > Ra.

Convective instability tends to
grow only in a basal sublayer with
R̂a > Ra

⇒ “Stagnant-Lid” mode
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Above analytical consideration
also suggests that Ra for the
entire layer should be maxi-
mum at the transition into ST
regime.

The plots for free-slip top surfaces (F/F and F/R) have
maxima at around E = 8.3.

⇒ Transition into ST regime occurs at E ≃ 8.3 for a planar
layer.
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Considering where descending
flows are amplified most inten-
sively ....

z + δz

z

vz(z + δz)

vz(z)

Here we define a quantity ∆h as a function of height z
defined with,

vz(z)− vz(z + δz) ≃ −
∂vz
∂z

δz =

(
∂vx
∂x

+
∂vy
∂y

)

︸ ︷︷ ︸

∝∆h

δz

The value of |∆h| becomes locally maximum at a height z
where a vertical flow is amplified most intensively.
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As for a local maximum other
than at z = 0,

❏ Where does it occur?

❏ How large is it ?

The local maximum of |∆h| occurs at deeper position with
increasing E.

At transition into ST regime (E = 8.3), the local maximum
becomes more than 10 times larger than |∆h| at z = 1.
⇒ to be used as a criterion for a spherical shell convection.
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Thin spherical shell (γ = 0.95)
Rac0 against E ℓc0 against E
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Quite similar to the case in a planar layer:

❏ Three regimes (small E, moderate E, and large E),

❏ Maxima in the plots of Rac0 for F/F and F/R at E ≃ 8.3,

❏ smooth changes in Rac0 and ℓc0.
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Thick spherical shell (γ = 0.55)
Rac0 against E ℓc0 against E
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r1 = 20/9
r0 = 11/9

Three regimes (small E, moderate E, and large E) exist, but ...

❏ Maxima in the plots of Rac0 for F/F and F/R at E ≃ 10,
(but NOT the transition into ST-mode)

❏ discontinuous changes in Rac0 and ℓc0.
(mostly due to small horizontal extent)
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Suppose again where descend-
ing flows are amplified most in-
tensively in a spherical shell.

r + δr

r

vr(r + δr)

vr(r)

Here we consider a quantity ∆h as a function of radius r
defined with,

r2vr(r)− (r + δr)2vr(r + δr) ≃ −
1

r2
∂

∂r
(r2vr)r

2δr

=

(
1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vφ
∂φ

)

︸ ︷︷ ︸

∝∆h

r2δr

Note the definition of ∆h different from previous one.
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(a) thin shell (b) thick shell
(γ = 0.95) (γ = 0.55)
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Based on similar criterion with a planar layer, the transition
into ST-mode occurs

❏ at E ≃ 8.3 for γ = 0.95 (as in a planar layer)

❏ at E ≃ 9.2 for γ = 0.55
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The variations against the as-
pect ratio of the spherical shell γ
of the values of Ec for the tran-
sition into the ST regimes.

blue : empirical estimate

(from ∆h)

red : analytical estimate

(although not shown in detail)

In general, smaller γ (thicker shell) needs larger E for the
transition into ST regimes.

❏ because of larger temperature contrast between ascending
flows and surroundings ?



Discussion and Concluding Remarks

➢Acknowledgement

Introduction

Numerical Model

Result 1: isoviscous

Results 2 : η(T ) in
a planar layer

Results 3 : η(T ) in
a spherical shell

Discussion and
Concluding Remarks

➢other bodies?

➢γ = 0.55 (1)

➢γ = 0.55 (2)

➢elongated ST

➢Future directions

➢

Linear Stability
Analysis

analytically for shell

Supplementary material for GFD Seminar August 21, 2010. – slide 32



Application to mantle convection in other bodies?

➢Acknowledgement

Introduction

Numerical Model

Result 1: isoviscous

Results 2 : η(T ) in
a planar layer

Results 3 : η(T ) in
a spherical shell

Discussion and
Concluding Remarks

➢other bodies?

➢γ = 0.55 (1)

➢γ = 0.55 (2)

➢elongated ST

➢Future directions

➢

Linear Stability
Analysis

analytically for shell

Supplementary material for GFD Seminar August 21, 2010. – slide 33

Planetary Data
Mercury Venus Earth Mars Moon

Radius 0.38 0.95 1 0.54 0.27
Mass 0.055 0.815 1 0.107 0.012
Density
[kg/m3]

5430. 5250. 5515. 3940. 3340.

MoI 0.34 ? 0.3355 0.3662 0.3905
Rc/Rp 0.8 0.55? 0.546 0.5 0.25

Ec 8.4 9.2 9.2 9.3 > 10.5
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(b) � (rη = 106)

(c) N (rη = 104)

The curve of critical Rayleigh number Rab and viscosity
contrast rη ≡ exp(E) has a bend near × (rη = 104 ≃ e9.2).

⇒ demonstrates significance of present estimate
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(b) � (rη = 106)

(c) N (rη = 104)

For the value of rη = 104 at the transition into ST regime,
convection has horizontally-elongated cells.

wide convection cells beneath cold stiff lids at rη ≃ 104 ?
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“Elongated-ST” mode
(figure and movie modified from Kameyama and Ogawa, 2000)

Rab = 6× 106, rη = 104, width/height=3

≃

❏ horizontally-elongated convection cell

❏ minor descending plumes from base of cold lid

✏ cold lid is stiff enough to prevent minor instabilities
from penetrating upward.
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How come the convective flows with wide cells beneath cold
stiff lids in mantles of terrestrial planets ?

In particular,

what mechanisms cause convection cells of large horizontal
length scales ?

Hopefully, graduate students will address:

❏ the effects of material properties (other than viscosity) ?

✏ thermal expansivity, thermal conductivity, .... ?

❏ the effects of chemical heterogeneity (and surface tectonics) ?

✏ If ascending plumes are “anchored” by chemical “piles”
in the lowermost mantle ?
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Split all quantities into the sum of

❏ reference state (denoted by overbars)

❏ infinitesimal perturbation (denoted by primes)

T = T + T ′, v = v + v
′, p = p+ p′

Choice of reference state

❏ v = 0 (motionless)

❏ 0 = ∇2T (1-D steady heat
conduction)

0 = d2T
dz2

for a planar layer,

0 = 1

r2
d
dr

(

r2 dT
dr

)

for a spher-

ical shell,

temperature
he

ig
ht

bottom

top

0 1

in a planar layer

in a spherical shell

T ∝ z

T ∝ r−1
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Derive linearized equation for infinitesimal perturbations
Dropping the second-order terms yields

❏ Equation of heat transport
∂T ′

∂t
+ v

′ · ∇T = ∇2T ′

❏ Equation of continuity (incompressible fluid)
∇ · v′ = 0

❏ Equations of motion (force balance)
0 = −∇p′ +∇ · [η (∇⊗ v

′ + v
′ ⊗∇)] +RaT ′

eg
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thin shell (γ = 0.95) thick shell (γ = 0.55)
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In contrast to a planar case, the maxima of Rac0 against E
do not necessarily indicate the transition into ST regimes.
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By using appropriately defined Rayleigh number Ra∗, we will
explore the analytical estimate for the transition.

Key assumption:
(a) r∗ and T∗ (in entire layer) (b) r2∗ and T2∗ (in lower sublayer)

temperature

he
ig

ht

r0

r1

0 1

r*

T*

temperature

he
ig

ht

r0

r1

0 1

r2

r2*

T2 T2*

The temporal evolution of perturbation is assumed to be
sensitive to the viscosity of T = T∗ at r = r∗ where the
radial temperature gradient is equal to an average
temperature gradient across the entire layer.
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(a) r∗ − r0 against γ (b) T∗ against γ
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(a) γ = 0.55 (b) planar layer
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(a) Rac0∗ for γ = 0.95 (b) Rac0∗ for γ = 0.55
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