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 Magnetohydrodynamic (MHD) approximation 
is well-used.  
 
 
 
 
 
 

 What are the limitations? 
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(Wikipedia Sun) 

(HP of Prof. Z. Yoshida) 

(Glatzmeier and Roberts, 1995) 



 Kinetic theory 
    Two-fluid model (taking moments) 
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 Quasi-neutrality 



 Kinetic theory 
    Two-fluid model (taking moments) 

    One-fluid model (quasi-neutrality)  (Lüst, 1959) 
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: Continuity eqn. 

: Momentum eqn. 

: Generalized 
  Ohm’s law 

Collision (resistivity) 

Hall term 

Electron inertia 
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Vasyliunas (1975) 

Shay et al. (2001) 

Fitzpatrick (2001) 

Watson 

Bhattacharjee et al. (1999) 

There is no                term 
 in the momentum equation! 
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 (Ideal) MHD 

 Hall-MHD 

 Inertial-MHD (IMHD) 
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Pre-Maxwell equations 

: The characteristic timescale 
      << the gyroperiod of electron 

(Magnetic reconnection region?) 
 Governing eqns. 



Comparing the linear wave modes 
      between MHD and IMHD. 
 
Classifying some IMHD models  
     in terms of the energy conservation. 
 
Considering the effect of electron inertia 
     using IMHD, especially focusing on some 
     equilibrium states.  
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 Basic state (Shear) Alfven wave 

Fast/Slow magnetosonic wave 

 Linearized compressible MHD 

: uniform 

: no flow 

(Fitzpatrick) 
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 MHD 

 Inertial MHD 

: Alfven speed 

Higher wavenumber waves 
propagate more slowly! 
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 Governing equations 

 Energy conservation 
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 Energy conservation 

This is not a correct flux form… 
but total energy H is conserved! 
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The epsilon term in the momentum 
equation is important!! 
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Vasyliunas (1975) 

Shay et al. (2001) 

Fitzpatrick (2001) 

Watson 

Bhattacharjee et al. (1999) 

There is no                term 
 in the momentum equation! 
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With no flow 
1. Grad-Shafranov equation 

 
With flow (incompressible) 

1.   
2. Beltrami-“Jeltrami” flow 
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 Governing equation (no flow) 

 Axisymmetric solution 

: Grad-Shafranov equation 

What occurs with the electron inertia? 

(Wikipedia) 
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“Straight torus” = cylinder; torus with no curvature 

 “Axisymmetric” solution = z independent solution 

: G-S in “straight torus” 

 When                 , then we find that                 and                    , 
    and obtain 

z 

What occurs when epsilon and delta are finite? 



2011/10/19 CPS2011 26 

 If the plasma is barotropic, i.e.,                ,  

Modified Grad-Shafranov equation in “straight torus” 
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 Incompressible plasma 

?? 
I did not get 

any useful constraints… 
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Straight torus Torus 

Incompressible 

3 constraints 
obtained 

3 constraints 
obtained 

Modified G-S 
obtained ?? 

Compressible 

If barotropic, 3 
(incomplete) 
constraints 
obtained. 

? 

If barotropic, 
modified GS 

obtained. 
??? 

Epsilon term 
is considered 

Epsilon and 
delta term 

are considered 



With no flow 
1. Grad-Shafranov equation 

 
With flow (incompressible) 

1.   
2. Beltrami-“Jeltrami” flow 
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 Governing equations (incompressible IMHD) 

 Assuming 

 If 

quite similar! 



With no flow 
1. Grad-Shafranov equation 

 
With flow (incompressible) 

1.   
2. Beltrami-“Jeltrami” flow 
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: Beltrami flow 

: “Jeltrami” current 

If 
similar to 
Bernoulli’s 
equation 



 Modified Alfven wave in Inertial MHD is dispersive. 
 

 The epsilon term in the momentum equation is 
important in terms of energy conservation. 
 

 Modified Grad-Shafranov equation is obtained in 
“straight torus.” In the real torus, we obtained only 
some constraints. 
 

 Governing equations of equilibrium states with flow 
   can be simplified in           and in Beltrami-“Jeltrami” 

flow. 
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 Physical interpretation of equilibrium state with 
delta term in modified Grad-Shafranov equation 
with curvature 
 

 Studying the stability with the effect of epsilon and 
delta term 
 

 Shocks 
 

 Magnetic reconnection 
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“Shear Turbulence: Onset and Structure” 

Fabian Waleffe 
(University of 

Wisconsin, 
Madison) 

Richard Kerswell 
(Bristol University) 

(2011) (1995) 

(1990) (2011) 

(1988) 
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Canonical 
Laminar flow 

“Turbulent” 
State 

Transition occurs suddenly, 
noise-dependently and 

dramatically! 
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Canonical Flow Critical Reynolds 
number 

Plane Couette ∞ 

Plane Poiseuille 5772 
Hagen-

Poiseuille (Pipe) ∞? 

“Turbulent” 
State 

Transition can occur at 
lower Reynolds number! 

Why? What occurs? 



1. General Introduction and Overview. 

2. Viscous derivation of classic inviscid stability results for shear 
flows. Viscous instability. 

3. Diffusion and damping in shear flows: a truly singular limit. 
Critical layers. 

4. Origin and survival of 3D-ality. 

5. Instability of streaky flows. Asymptotics of self-sustaining process. 

6. Spatio-temporal complexity. Spots, puffs and slugs, snakes and 
spirals. 
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 Transition threshold i.e. the power law of the amplitude against Re 
 

 Structure (horseshoe vortex etc.) 
 Linear and energy stabilities 
          Squire’s theorem (linear) vs. streamwise roll (energy) 
 
 How to sustain the turbulent state 
          the feedback mechanism to the roll pattern 
 Self-Sustaining Process (SSP) and SSP method 
          finding the exact coherent structures 
 
 The boundary of the laminar and turbulent states in phase space 
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Waleffe (1997) 
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Rolls V redistribute 
streamwise momentum 

M  U Streak U 
unstable to 
x-mode W 

nonlinear 
interaction of W 
feeds back on 

rolls V 

Mean M 
shears W 
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1. Transition scenarios: normality vs non-normality. 

2. Edge tracking – walking the tightrope. 

3. Triggering transition efficiently. 

4. Turbulence: transient or sustained? 
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 Supercritical or subcritical scenarios 
       Normal or Non-normal linear operator 

 
 Finding nonlinear solutions 
            (e.g. Nagata’s solution) 

 
 Edge tracking 

 
 Finding Minimal Seeds 

 
 Is the turbulent state is a transient state or 

sustained one?   puff, localized pattern 
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“Minimal seed”: the I.C. of smallest energy 
                         which can trigger transition to “turbulence” 

Energy growth rate: 

  Can we identify the minimal seed by looking for an I.C. 
     which experiences largest growth? 

 Linear transient growth 
     Matrix-based  SVD 
     Matrix-free  Variational principle (Euler-Lagrange eq.) 
                                 this method can be used to study 
                                 the nonlinear transient growth! 
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 Linearized Navier-Stokes eq. 

 Growth rate 

 Euler-Lagrange eqns. 

Dual Linearized 
Navier-Stokes 
eqn. 
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This method is easily extendable to 
the nonlinear problem! 
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 Linear 

 Nonlinear 

Schmid and Henningson (1994) 

Pringle and Kerswell (2010) 
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 得たもの 

  生活力，料理の技術 
  アメリカ人の人生の楽しみ方 
  スポーツの重要性 
  度胸（英語力） 

  Shear Turbulence の知識 

  MHD の知識 

 
 失ったもの 
  体重 (-5kg) 
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