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Jupiter’s metallic hydrogen region

The origin of the magnetic field/dynamo action

— poorly known in data

How to infer the deep interior dynamics?

— through the magnetic field:

e pre-Juno (n g 4): strong, predominantly axial
dipole, secular variation?

e post-Juno (n < 10 and more?): closest as ever to
a dynamo region: localized patches

— through any oscillations/waves?

* an electrically-conducting, low-viscous fluid
in a rapidly-rotating spherical shell
permeated by the magnetic field

— Lorentz/Coriolis = O(1)?
— the rotating MHD hosts a variety of waves

Predicted internal structure
(Guillot 1999)
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Rotating MHD waves

 Waves in the presence of both magnetic field and rotation
have been studied for incompressible fluids and applied to
Earth’s liquid iron core
— torsional Alfvén waves (e.g. Braginsky 1967, Zatman & Bloxham 1997)

* e.g.~6yrsvariation =2 core internal field Bs >~ 2 mT (Gillet et al. 2010)
* accounting for the interannual length-of-the-day variations?

— magnetic Rossby waves (Hide 1966)
* e.g.~300yrs westward drift 2 By ~ 1-10 mT? (Hori et al. 2015)

— MAC waves in a thin stably-stratified layer, at the top of the core?
e axisymmetric (e.g. Braginsky 1993; Buffett 2014), fast magnetic Rossby (Chulliat et al. 2015)

e What about in Jupiter’s interior?

— density significantly varies with radius: p(r.,.)/P(r metatic) ~< 20
* anelastic approximation for compressible fluids adopted



Torsional Alfvén waves

A special class of Alfvén waves (Braginsky 1970; also Jault & Finlay 2015) :

— The azimuthal momentum equation integrated over

cylindrical surfaces C = 2ms h(s) about the rotation axis: Rotamnax,s_é)

—/ﬁu¢dS—|— / € - (V-ﬁuu)dS+2Q/ﬁust = /é¢ -(J x B)dS y- i
ot Je c c c \

— For anelastic/incompressible fluids, the Coriolis term vanishes

— The magnetostrophic balance (Ro, E<<1 & A=0(1) ) yields a
steady state (Taylor 1963)

— Cylindrical perturbations on the state, <uy’> = <uy’>(s,t),
can be governed by a homogeneous equation:

o> (W) 1 0 o, 0 (ul)
o2 s s$3h(p)Os <s3h<p>U ds )

* propagation in radius s with Alfvén speed U,
given by z-mean quantities: U,=(<B2>/<p>, )2

* both outward (+s) and inward (-s) propagation,
or standing waves, possible

(Roberts & Aurnou 2012)




Torsional waves in Earth’s core

Axisymmetric zonal velocity u,,
Suppose the incompressible case in a core flow model (Gillet et al. 2015)
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* the internal field strength of <B;2>/2>2 mT

— geodynamo simulation (wicht & Christensen

in a dynamo simulation (Schaeffer et al. 2017)
2010; Teed et al. 2014, Schaeffer et al. 2017)
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Jovian dynamo models

Setup (Jones 2014; also Gastine et al. 2014):

— model a metallic region & a transition to
the molecular region: 0.09R < r < 0.96R|

— dynamos driven by rotating, anelastic
convection (Lantz & Fan 1999; Braginsky & Roberts 1995)
— a reference state (French et al. 2012):

* density contrast, p(rere)/p(reutorr) ~ 18
* electrical conductivity o drops at r ~ 0.85R}

by more than five orders

Some features:

— jupiter-like magnetic fields reproduced

The reference state used in the model
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Setup (Jones 2014; also Gastine et al. 2014):

— model a metallic region & a transition to
the molecular region: 0.09R1 < r < 0.96RJ

— dynamos driven by rotating, anelastic
convection (Lantz & Fan 1999; Braginsky & Roberts 1995)
— a reference state (French et al. 2012):

* density contrast, p(rere)/p(reutorr) ~ 18
* electrical conductivity o drops at r ~ 0.85R}

Jovian dynamo models

by more than five orders

Some features:

— jupiter-like magnetic fields reproduced

— a magnetic tangent cylinder formed

attaching to a top of the metallic region

at the equator

one strong jet outside the MTC; weak

multiple zonal flows inside

— fluctuating: to be analyzed

The reference state used in the model
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Anelastic Alfvén speed in simulations

* Predicted Alfvén speeds
U, = (<B2>/po<p>)Y2:

— independent of wavenumbers, i.e. nondispersive
— higher for low p, i.e.increasing with s
— drops to the MTC
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* Identified with the predicted speeds

Torsional waves in Jovian simulations

Axisymmetric azimuthal velocity, U,

of Up= (<B2>/po<p>)"/2

e

— travelling in s, outwardly or inwardly,

from an outer radius (0.6 < s/rqws < 0.8)

Reflected from the MTC

— which acts as an interface to a

resistive zone

* 1D models helpful [utc

e
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Evolution of torsional waves

At t =0.00060 I

 Waveforms can become sharp

— steepening; weak, unstable

 typical for inviscid nonlinear
waves

* e.g. water waves, shock waves

 cf. dispersive, cnoidal/solitaty
Rossby ones (Hori et al. 2017)

e Reflection from the MTC

— as well as transmission to the Mé
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Alfvén waves approaching a resistive layer

Consider 1d models: > By

A

B = Bpe, +by(r)e, , u=uy(x)e,

then the governing equations
b, Ouy | 0 ab Ou,  Bo b,

= By—2 Y =
ot ox 8:1: Oz ot wp Ox

where B, and mn are constants; =0 forx<0

resistive layer
(nonzero n)
forx>0
5

. . ) ) I
Seek solutions in form of !
by, = et (e_“m + R e”kx) forx<0

= T i for x>0 (with complex 1)
with continuous conditions across the interface x = 0:
b _ gt ob,; B ab,j
Y 9 Ox

to yield the reflection coefficients for o >> V,?/n,:

_zk—I—\/w/an —1+14) T_14R
— Jw/2no(=141)

— for large o >> k?ny, then R~ -1 & T ~ 0: perfect reflection

— u, ~ db,/dx: a negative reflection in b, yields a positive reflection in u,



Excitation mechanism

The momentum equation can be split

Reynolds term Fg

into the restoring and forcing parts: T, b
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Torsional ‘oscillations’ possible

 Zonal flow fluctuations in another case

— standing inside the MTC

* travelling from an outer radius both inwardly and outwardly

* superposition with reflected waves enables standing waves

— only transmitted outside the MTC

* while being absorbed

- The nature signifying the depth?

— cf. Earth’s CMB

 abound of the core fluid
(e.g. Schaeffer & Jault 2016)
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Detectable on Jupiter?

» Typical timescales

— Given afield of Bs 3 mT & p ~ 853 kg/m?3 at the equator at a top
of the metallic region (~ 0.85 R}), then Alfvén speed ~9.2*102m/s
— TW traveltimes across the metallic region can be 9-13 years

 Note: the internal field uncertain

e TW seen on a spherical surface

above the metallic region _ _ - -
Filtered, zonal velocity fluctuation u’,/max(U,) at the

— amplitude < 1/10 of our cutoff boundary (~0.96 R)) in the southern hemisphere
zonal jet outside MTC
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Latitude

-10F

-20

Long-term changes at the cloud deck?

e Zonal wind speed
— In-situ (Cassini vs. Voyager 2) reported (Porco et al. 2003)

— ground/HST campaigns (2009-2016) identified relevant variability
near 24°N & 5-7 year periods at lower latitudes (Tollefson et al. 2017)

* Coloration, brightening, outbreak events, etc.
— sketched for > 100 years: ‘global upheavals’ (Rogers 1995; Fletcher 2017)

— irregularly, but periodic at some epoch at NTB?

Absolute Zonal Winds

Lomb-Scargle
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Length-of-day variations

* TW transport the angular momentum

— almost-perfectly exchanging the angular momentum oc
with the overlying molecular region, where

Smtc Z+ -
do = 27r/ / h(peq>32<u;5>dzds
Stc z—

* This may fluctuate the planet’s rotation rate (LOD)
— the change 8o =-27 | 3P/P2 implying an LOD variation 3P

— cf. O(107s) changes of the A0 s
System Il ?: decametric radio g - inside MTC
emission (Higgins et al. 1996) o 207
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Jovian LOD changes?

 The gas giant’s rotation rate

— System Il (1965): 9h 55m 29.71s

* relying on measurements of decametric radial emission from
the magnetosphere (Burke & Franklin 1955)

* the accuracy in O(102s) has been some debate

— the true change (Higgins et al. 1996, 1997)
— jovimagnetic SV (Russell et al. 2001; Ridley & Holme 2016)

2090 T T T T T T T T T
@ 24yr

— what else?? 00,85 iz

29.80|- -

29751 1 -
System 1 1965 B AR o A

29.65 " i \

29.60} ! 4: -

Rotation Period (sec)
(in excess of 9" 55™)

29.55 -

29.50 ] ! ] 1 / ) ] |v ]
1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984

(Higgins et al. 1996) Mid-Date (year)




Summary

Axisymmetric, torsional Alfvén waves possibly excited in
Jupiter’s metallic H region

e identified in Jovian dynamo simulations

— implementing a smooth transition from the metallic to molecular
regions, forming a magnetic TC

* propagating in cylindrical radius with Alfvén speeds ~ B,/p?/?2
— on timescales of O(10°%1! yrs) for an equatorial field of 1-3 mT
* Note: the dimensional values may vary
— reflections from MTC, also standing ‘oscillations’, may reveal the radius

— angular momentum exchanges with the overlying molecular region,
fluctuating LOD

— detectable in surface zonal flows beyond the metallic region



Thank you



Anelastic spherical dynamo simulations

« MHD dynamos driven by anelastic convection in rotating spherical shells

— adopting the Lantz-Braginsky-Roberts formalism (Lantz & Fan 1999; Braginsky & Roberts
1995; also Jones+ 2011)

— dimensionless, governing equations about the reference state:

V:-pu=0
ou Pm 1 Pm?Ra dT
T V= Vp+2, xu— - - 6, + Pm F
8t+u Vu Z [Vp—l—Ze X U ﬁ(VxB)xB} Pr drse + Pm Fy
0B _
E:Vx(uxB)—Vx(nVXB), V-B=0
08 Pm |1 o Pr 17 2
ot " Pr {ﬁT (PTV5) } PmRaT [E ﬁ( BY Gy

— with Ekman, kinetic/magnetic Prandtl, and Rayleigh numbers with mid-depth values (X,,):

Twmd*AS
E:L, Pr:Z Pm:L, Ra=——
Od? K N VK
(1.5-2.5)*105 0.1 3 0(107)

0(1018) 0.1-1 0(107)

* Leeds spherical dynamo code: based on pseudo spectral method



